Chapter 7: Problem 575
If rth term in expansion of \([x+(1 / 2 x)]^{12}\) is constant then \(r\) (a) 5 (b) 6 (c) 7 (d) 8
Chapter 7: Problem 575
If rth term in expansion of \([x+(1 / 2 x)]^{12}\) is constant then \(r\) (a) 5 (b) 6 (c) 7 (d) 8
All the tools & learning materials you need for study success - in one app.
Get started for free\(\mathrm{R}=(3+\sqrt{5})^{2 \mathrm{n}}\) and \(\mathrm{f}=\mathrm{R}-[\mathrm{R}]\), Where [] is an integer part function then \(\mathrm{R}(1-\mathrm{f})=\) (a) \(2^{2 \mathrm{n}}\) (b) \(4^{2 \mathrm{n}}\) (c) \(8^{2 \mathrm{n}}\) (d) \(1^{2 \mathrm{n}}\)
Co-efficient of \(\mathrm{x}^{-3}\) in expansion of \([\mathrm{x}-(\mathrm{a} / \mathrm{x})]^{11}\) is \(\ldots \ldots\) (a) \(-792 \mathrm{a}^{5}\) (b) \(-923 \mathrm{a}^{7}\) (b) \(-792 \mathrm{a}^{6}\) (d) \(-330 \mathrm{a}^{7}\)
Remainder when \(2^{2000}\) is divided by 17 is......... (a) 1 (b) 2 (c) 8 (d) 12
The least positive remainder when \(17^{30}\) is divided by 5 is (a) 2 (b) 4 (c) 3 (d) 1
\(\left[5^{(1 / 2)}+7^{(1 / 8)}\right]^{1024}\) has number of rational terms \(=\) (a) 0 (b) 129 (c) 229 (d) 178
What do you think about this solution?
We value your feedback to improve our textbook solutions.