Chapter 7: Problem 584
Numbers of rational terms in expansion \(\left.\left[3^{(1 / 2)}+5^{(1 / 8)}\right)\right]^{256}\) are (a) 33 (b) 34 (c) 35 (d) 32
Chapter 7: Problem 584
Numbers of rational terms in expansion \(\left.\left[3^{(1 / 2)}+5^{(1 / 8)}\right)\right]^{256}\) are (a) 33 (b) 34 (c) 35 (d) 32
All the tools & learning materials you need for study success - in one app.
Get started for freeIf rth term in the expansion of \(\left[a x^{p}+\left(b / x^{q}\right)\right]^{n}\) is constant, then \(\mathrm{r}=\) (a) \([(q n) \bar{m}+q)]+1\) (b) \([(\mathrm{pn}) /(\mathrm{p}-\mathrm{q})]+1\) (c) \([(\mathrm{pn}) /(\mathrm{p}+\mathrm{q})]+1\) (d) \([(\mathrm{pn}) /(\mathrm{p}-\mathrm{q})]-1\)
In the expansion of \(\left[x^{3}-\left(1 / x^{2}\right)\right]^{15}\), the constant term is (a) \(-{ }^{15} \mathrm{C}_{9}\) (b) \({ }^{15} \mathrm{C}_{9}\) (b) 0 (d) \({ }^{15} \mathrm{C}_{11}\)
It \(\mathrm{A}\) and \(\mathrm{B}\) are coefficients of \(\mathrm{x}^{\mathrm{r}}\) and \(\mathrm{x}^{\mathrm{n}-\mathrm{r}}\) respectively in expansion of \((1+x)^{n}\) then \(=\) (a) \(\mathrm{A}+\mathrm{B}=\mathrm{n}\) (b) \(\mathrm{A}=\mathrm{B}\) (c) \(\mathrm{A}+\mathrm{B}=2^{\mathrm{n}}\) (d) \(A-B=2^{n}\)
The interval in which \(\mathrm{x}(>0)\) must lie so that greatest term in the expansion of \((1+\mathrm{x})^{2 \mathrm{n}}\) has the greatest coefficient is (a) \([\\{(n-1) / n\\},\\{n /(n-1)\\}]\) (b) \([\\{\mathrm{n} /(\mathrm{n}+1)\\},\\{(\mathrm{n}+1) / \mathrm{n}\\}]\) (b) \([\\{n /(n+2)\\},\\{(n+2) / n\\}]\) (d) None
\({ }^{\mathrm{n}} \mathrm{C}_{1}+2 \cdot{ }^{\mathrm{n}} \mathrm{C}_{2}+3 \cdot{ }^{\mathrm{n}} \mathrm{C}_{3}+\ldots+\mathrm{n} \cdot{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{n}}=\) (a) n \(\cdot 2^{n-1}\) (b) \((\mathrm{n}-1) 2^{\mathrm{n}-1}\) (c) \((\mathrm{n}+1) 2^{\mathrm{n}-1}\) (d) \((\mathrm{n}-1) 2^{\mathrm{n}}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.