Chapter 7: Problem 584
Numbers of rational terms in expansion \(\left.\left[3^{(1 / 2)}+5^{(1 / 8)}\right)\right]^{256}\) are (a) 33 (b) 34 (c) 35 (d) 32
Chapter 7: Problem 584
Numbers of rational terms in expansion \(\left.\left[3^{(1 / 2)}+5^{(1 / 8)}\right)\right]^{256}\) are (a) 33 (b) 34 (c) 35 (d) 32
All the tools & learning materials you need for study success - in one app.
Get started for free\(\mathrm{s}(\mathrm{k}): 1+3+5+\ldots+(2 \mathrm{k}-1)=3+\mathrm{k}^{2}\) then which statement is true ? (a) \(\mathrm{s}(\mathrm{k}) \Rightarrow \mathrm{s}(\mathrm{k}+1)\) (b) \(\mathrm{s}(\mathrm{k}) \Rightarrow \mathrm{s}(\mathrm{k}+1)\) (c) s (1) is true (d) Result is proved by Principle of Mathematical induction
6 th term in the expansion of \(\left[\left(1 / x^{(8 / 3)}\right)+x^{2} \log _{10} x\right]^{8}\) is 5600 then \(\mathrm{x}=\) (a) 2 (b) \(\sqrt{5}\) (c) \(\sqrt{(10)}\) (d) 10
Let \(\mathrm{x}>-1\) then statement \((1+\mathrm{x})^{\mathrm{n}}>1+\mathrm{n} \mathrm{x}\) is true for (a) \(\forall \mathrm{n} \in \mathrm{N}\) (b) \(\forall n>1\) (c) \(\forall \mathrm{n}>1\) and \(\mathrm{x} \neq 0\) (d) \(\forall \mathrm{n} \in \mathrm{R}\)
When \(5^{20}\) is divided by 48 then remainder is (a) 2 (b) 0 (c) 1 (d) 5
If coefficients of \(\mathrm{x}^{7}\) and \(\mathrm{x}^{8}\) are equal in expansion of \([2+(\mathrm{x} / 3)]^{\mathrm{n}}\) then \(\mathrm{n}=\) (a) 55 (b) 56 (c) 54 (d) 58
What do you think about this solution?
We value your feedback to improve our textbook solutions.