Chapter 8: Problem 593
\((1 / 2)+(3 / 4)+(7 / 8)+(15 / 16) \ldots 100\) terms \(=\) (A) \(2^{100}+99\) (B) \(2^{-100}+99\) (C) \(2^{-101}+100\) (D) \(2^{-99}+99\)
Chapter 8: Problem 593
\((1 / 2)+(3 / 4)+(7 / 8)+(15 / 16) \ldots 100\) terms \(=\) (A) \(2^{100}+99\) (B) \(2^{-100}+99\) (C) \(2^{-101}+100\) (D) \(2^{-99}+99\)
All the tools & learning materials you need for study success - in one app.
Get started for freeThe sum of the series \(a-(a+d)+(a+2 d)-(a+3 d)+\ldots u p\) to 50 terms is \((\mathrm{A})-50 \mathrm{~d}\) (B) \(25 \mathrm{~d}\) (C) \(a+50 d\) (D) \(-25 \mathrm{~d}\)
\([1 /(2 \times 5)]+[1 /(5 \times 8)]+[1 /(8 \times 11)]+\ldots 100\) terms (A) \([(25) /(160)]\) (B) \((1 / 6)\) (C) \([(25) /(151)]\) (D) \([(25) /(152)]\)
If a set \(\mathrm{A}=\\{3,7,11, \ldots, 407\\}\) and a set \(\mathrm{B}=\\{2,9,16, \ldots, 709\\}\) then \(\mathrm{n}(\mathrm{A} \cap \mathrm{B})=\) (A) 13 (B) 14 (C) 15 (D) 16
Find \(\mathrm{a}, \mathrm{b}\) and \(\mathrm{c}\) between 2 and 18 such that \(\mathrm{a}+\mathrm{b}+\mathrm{c}=25\), \(2, a, b\) are in A. P. and \(b, c, 18\) are in G. P. (A) \(5,8,12\) (B) \(4,8,13\) (C) \(3,9,13\) (D) \(5,9,11\)
If \(\mathrm{a}, \mathrm{b}, \mathrm{c}\) are in G. P., \(\mathrm{a}, \mathrm{x}, \mathrm{b}\) are in \(\mathrm{A}\). P. and \(\mathrm{b}, \mathrm{y}, \mathrm{c}\) are in A. P., then \((\mathrm{a} / \mathrm{x})+(\mathrm{c} / \mathrm{y})=\) (A) 1 (B) \((1 / 2)\) (C) 2 (D) 4
What do you think about this solution?
We value your feedback to improve our textbook solutions.