Chapter 8: Problem 593
\((1 / 2)+(3 / 4)+(7 / 8)+(15 / 16) \ldots 100\) terms \(=\) (A) \(2^{100}+99\) (B) \(2^{-100}+99\) (C) \(2^{-101}+100\) (D) \(2^{-99}+99\)
Chapter 8: Problem 593
\((1 / 2)+(3 / 4)+(7 / 8)+(15 / 16) \ldots 100\) terms \(=\) (A) \(2^{100}+99\) (B) \(2^{-100}+99\) (C) \(2^{-101}+100\) (D) \(2^{-99}+99\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIn a \(\triangle \mathrm{ABC}\) angles \(\mathrm{A}, \mathrm{B}, \mathrm{C}\) are in increasing A. P. and \(\sin (B+2 C)=[(-1) / 2]\) then \(A=\) (A) \((3 \pi / 4)\) (B) \((\pi / 4)\) (C) \((5 \pi / 6)\) (D) \((\pi / 6)\)
If \(\alpha, \beta\) are the roots of \(a x^{2}-b x+c=o\) and \(\gamma, \delta\) are the roots of \(\mathrm{px}^{2}-\mathrm{qx}+\mathrm{r}=\mathrm{o}\) and If \(\alpha, \beta, \gamma, \delta\) are in G. P. then the common ratio is \(=\) (A) \((\text { ar } / \mathrm{cp})^{(1 / 4)}\) (B) \((\mathrm{ar} / \mathrm{cp})^{(1 / 8)}\) (C) \((\mathrm{ap} / \mathrm{cr})^{(1 / 4)}\) (D) \((\mathrm{ar} / \mathrm{cp})^{[(-1) / 4]}\)
If \(\left\\{a_{n}\right\\}\) is an A. P. then \(a_{1}^{2}-a_{2}^{2}+a_{3}^{2}-a_{4}^{2}+\ldots+a_{99}^{2}-a_{100}^{2}\) (A) \((50 / 99)\left(\mathrm{a}_{1}^{2}-\mathrm{a}_{100}^{2}\right)\) (B) \([(1000) /(99)]\left(\mathrm{a}_{100}^{2}-\mathrm{a}_{1}^{2}\right)\) (C) \((50 / 51)\left(\mathrm{a}_{1}^{2}+\mathrm{a}_{100}^{2}\right)\) (D) None of this
The sum of the numbers \(1+2.2+3.2^{2}+4.2^{3}+\ldots+50.2^{49}\) is (A) \(1+49.2^{49}\) (B) \(1+49.2^{50}\) (C) \(1+50.2^{49}\) (D) \(1+50.2^{50}\)
In a G. P., the last term is 1024 and the common ratio is \(2 .\) Its 20 th term from the end is (A) \([1 /(512)]\) (B) \([1 /(1024)]\) (C) \([1 /(256)]\) (D) 512
What do you think about this solution?
We value your feedback to improve our textbook solutions.