Chapter 8: Problem 597
If the A. M. of two numbers a and \(b\) is equal to \(\sqrt{(10) \text { times }}\) their G. M. then \([(a-b) /(a+b)]=\) (A) \([\sqrt{(10) / 3]}\) (B) \(3 \sqrt{(10)}\) (C) \([9 /(10)]\) (D) \([3 / \sqrt{(10)}]\)
Chapter 8: Problem 597
If the A. M. of two numbers a and \(b\) is equal to \(\sqrt{(10) \text { times }}\) their G. M. then \([(a-b) /(a+b)]=\) (A) \([\sqrt{(10) / 3]}\) (B) \(3 \sqrt{(10)}\) (C) \([9 /(10)]\) (D) \([3 / \sqrt{(10)}]\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIf three positive real numbers \(\mathrm{a}, \mathrm{b}, \mathrm{c}\) are in \(\mathrm{A}\). P. and if \(\mathrm{abc}=64\) then the minimum value of \(\mathrm{b}\) is (A) 6 (B) 5 (C) 4 (D) 3
Find out four numbers such that, first three numbers are in G. P., last three numbers are in A. P. having common difference 6, first and last numbers are same. (A) \(8,4,2,8\) (B) \(-8,4,-2,-8\) (C) \(8,-4,2,8\) (D) \(-8,-4,-2,-8\)
If \(\mathrm{a}, \mathrm{b}, \mathrm{c}\) are in \(\mathrm{A} . \mathrm{P}\). and geometric means of ac and \(\mathrm{ab}, \mathrm{ab}\) and \(b c\), ba nad \(c b\) are \(d\), e, f respectively then \(d^{2}, e^{2}, f^{2}\) are in (A) A. P. (B) G. P. (C) H. P. (D) A. G P.
The greatest value of \(n\) for which \(1+(1 / 2)+\left(1 / 2^{2}\right)+\ldots\) \(+\left(1 / 2^{\mathrm{n}}\right)<2\) is \((\mathrm{n} \in \mathrm{N})\) (A) 100 (B) 10 (C) 1000 (D) none of these
If the \(\mathrm{H}\). M. of a and \(\mathrm{c}\) is \(\mathrm{b}\), G. \(\mathrm{M}\). of \(\mathrm{b}\) and \(\mathrm{d}\) is \(\mathrm{c}\) and \(\mathrm{A} . \mathrm{M} .\) of \(c\) and e is \(\mathrm{d}\), then the G. M. of a and e is (A) \(b\) (B) \(c\) (C) \(\mathrm{d}\) (D) ae
What do you think about this solution?
We value your feedback to improve our textbook solutions.