Chapter 8: Problem 597
If the A. M. of two numbers a and \(b\) is equal to \(\sqrt{(10) \text { times }}\) their G. M. then \([(a-b) /(a+b)]=\) (A) \([\sqrt{(10) / 3]}\) (B) \(3 \sqrt{(10)}\) (C) \([9 /(10)]\) (D) \([3 / \sqrt{(10)}]\)
Chapter 8: Problem 597
If the A. M. of two numbers a and \(b\) is equal to \(\sqrt{(10) \text { times }}\) their G. M. then \([(a-b) /(a+b)]=\) (A) \([\sqrt{(10) / 3]}\) (B) \(3 \sqrt{(10)}\) (C) \([9 /(10)]\) (D) \([3 / \sqrt{(10)}]\)
All the tools & learning materials you need for study success - in one app.
Get started for freeFind out three numbers which are in G. P. such that their summation is 13 and the sum of their squares is 91 (A) \(3,1,9\) (B) \(1,3,9\) (C) \(1,9,3\) (D) \((13 / 3),(13 / 3),(13 / 3)\)
The nth term of an A. P. is \(\mathrm{p}^{2}\) and the sum of the first \(\mathrm{n}\) terms is \(\mathrm{s}^{2}\) The first term is (A) \(\left[\left(\mathrm{p}^{2} \mathrm{n}+2 \mathrm{~s}^{2}\right) / \mathrm{n}\right]\) (B) \(\left[\left(2 \mathrm{~s}^{2}+\mathrm{p}^{2} \mathrm{n}\right) / \mathrm{n}^{2}\right]\) (C) \(\left[\left(\mathrm{ps}^{2}-\mathrm{p}^{2} \mathrm{~s}\right) / \mathrm{n}\right]\) (D) \(\left[\left(2 \mathrm{~s}^{2}-\mathrm{p}^{2} \mathrm{n}\right) / \mathrm{n}\right]\)
If the sides of a \(\triangle \mathrm{ABC}\) are in A. P. and the greatest angle is double the smallest. The ratio of the sides of \(\triangle \mathrm{ABC}\) is (A) \(3: 4: 5\) (B) \(5: 12: 13\) (C) \(4: 5: 6\) (D) \(5: 6: 7\)
First term of a G. P. of \(2 \mathrm{n}\) terms is \(\mathrm{a}\), and the last term is 1 . The product of all the terms of the G. P. is (A) \((\mathrm{a} \ell)(\mathrm{n} / 2)\) (B) \((\mathrm{a} \ell)^{(\mathrm{n}-1)}\) (C) \((\mathrm{a} \ell)^{\mathrm{n}}\) (D) \((\mathrm{a} \ell)^{2 \mathrm{n}}\)
If \((1 / a),(1 / b),(1 / c)\) are in A. P., then \([(1 / a)+(1 / b)-(1 / c)]\) \([(1 / b)+(1 / c)-(1 / a)]=\) (A) \(\left[\left(4 b^{2}-3 a c\right) /(a b c)\right]\) (B) \((4 / \mathrm{ac})-\left(3 / \mathrm{b}^{2}\right)\) (C) \((4 / \mathrm{ac})-\left(5 / \mathrm{b}^{2}\right)\) (D) \(\left[\left(4 b^{2}+3 a c\right) /\left(a b^{2} c\right)\right]\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.