Chapter 8: Problem 598
If the harmonic mean and geometric mean of two numbers a and \(b\) are 4 and \(3 \sqrt{2}\) respectively then the interval \([a, b]=\) (A) \([3,6]\) (B) \([2,7]\) (C) \([4,5]\) (D) \([1,8]\)
Chapter 8: Problem 598
If the harmonic mean and geometric mean of two numbers a and \(b\) are 4 and \(3 \sqrt{2}\) respectively then the interval \([a, b]=\) (A) \([3,6]\) (B) \([2,7]\) (C) \([4,5]\) (D) \([1,8]\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIf three positive real numbers \(\mathrm{a}, \mathrm{b}, \mathrm{c}\) are in \(\mathrm{A}\). P. and if \(\mathrm{abc}=64\) then the minimum value of \(\mathrm{b}\) is (A) 6 (B) 5 (C) 4 (D) 3
6 th term of the sequence \((7 / 3),(35 / 6),[(121) /(12)]\), \([(335) /(24)], \ldots .\) is (A) \([(2113) /(96)]\) (B) \([(2112) /(96)]\) (C) \([(865) /(48)]\) (D) \([(2111) /(96)]\)
\([1 /(2 \times 5)]+[1 /(5 \times 8)]+[1 /(8 \times 11)]+\ldots 100\) terms (A) \([(25) /(160)]\) (B) \((1 / 6)\) (C) \([(25) /(151)]\) (D) \([(25) /(152)]\)
If \((1 / a),(1 / b),(1 / c)\) are in A. P., then \([(1 / a)+(1 / b)-(1 / c)]\) \([(1 / b)+(1 / c)-(1 / a)]=\) (A) \(\left[\left(4 b^{2}-3 a c\right) /(a b c)\right]\) (B) \((4 / \mathrm{ac})-\left(3 / \mathrm{b}^{2}\right)\) (C) \((4 / \mathrm{ac})-\left(5 / \mathrm{b}^{2}\right)\) (D) \(\left[\left(4 b^{2}+3 a c\right) /\left(a b^{2} c\right)\right]\)
\(\left(3 / 1^{2}\right)+\left[5 /\left(1^{2}+2^{2}\right)\right]+\left[7 /\left(1^{2}+2^{2}+3^{2}\right)\right] \ldots\) upto n terms \(-\) (A) \(\left[\left(6 \mathrm{n}^{2}\right) /(\mathrm{n}+1)\right]\) (B) \([(6 n) /(\mathrm{n}+1)]\) (C) \([\\{6(2 \mathrm{n}-1)\\} /(\mathrm{n}+1)]\) (D) \(\left[\left\\{3\left(n^{2}+1\right)\right\\} /(n+1)\right]\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.