Chapter 8: Problem 598
If the harmonic mean and geometric mean of two numbers a and \(b\) are 4 and \(3 \sqrt{2}\) respectively then the interval \([a, b]=\) (A) \([3,6]\) (B) \([2,7]\) (C) \([4,5]\) (D) \([1,8]\)
Chapter 8: Problem 598
If the harmonic mean and geometric mean of two numbers a and \(b\) are 4 and \(3 \sqrt{2}\) respectively then the interval \([a, b]=\) (A) \([3,6]\) (B) \([2,7]\) (C) \([4,5]\) (D) \([1,8]\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIf \(\mathrm{a}, \mathrm{b}, \mathrm{c}\) are in \(\mathrm{A} . \mathrm{P}\). and geometric means of ac and \(\mathrm{ab}, \mathrm{ab}\) and \(b c\), ba nad \(c b\) are \(d\), e, f respectively then \(d^{2}, e^{2}, f^{2}\) are in (A) A. P. (B) G. P. (C) H. P. (D) A. G P.
\([1 /(2 \times 5)]+[1 /(5 \times 8)]+[1 /(8 \times 11)]+\ldots 100\) terms (A) \([(25) /(160)]\) (B) \((1 / 6)\) (C) \([(25) /(151)]\) (D) \([(25) /(152)]\)
If \(\mathrm{a}, 4, \mathrm{~b}\) are in \(\mathrm{A} . \mathrm{P}\). and \(\mathrm{a}, 2, \mathrm{~b}\) are in G. P. then \((1 / \mathrm{a}), 1\), \((1 / \mathrm{b})\) are in (A) G. P. (B) A. P. (C) H. P. (D) A. G. P.
First term of a G. P. of \(2 \mathrm{n}\) terms is \(\mathrm{a}\), and the last term is 1 . The product of all the terms of the G. P. is (A) \((\mathrm{a} \ell)(\mathrm{n} / 2)\) (B) \((\mathrm{a} \ell)^{(\mathrm{n}-1)}\) (C) \((\mathrm{a} \ell)^{\mathrm{n}}\) (D) \((\mathrm{a} \ell)^{2 \mathrm{n}}\)
6 th term of the sequence \((7 / 3),(35 / 6),[(121) /(12)]\), \([(335) /(24)], \ldots .\) is (A) \([(2113) /(96)]\) (B) \([(2112) /(96)]\) (C) \([(865) /(48)]\) (D) \([(2111) /(96)]\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.