Chapter 8: Problem 604
If \((666 \ldots \text { n times })^{2}+(8888 \ldots\) n times \()=(4444 \ldots \mathrm{K}\) times \()\) then \(\mathrm{K}=\) (A) \(n+1\) (B) \(\mathrm{n}\) (C) \(2 \mathrm{n}\) (D) \(\mathrm{n}^{2}\)
Chapter 8: Problem 604
If \((666 \ldots \text { n times })^{2}+(8888 \ldots\) n times \()=(4444 \ldots \mathrm{K}\) times \()\) then \(\mathrm{K}=\) (A) \(n+1\) (B) \(\mathrm{n}\) (C) \(2 \mathrm{n}\) (D) \(\mathrm{n}^{2}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIf sec \((\mathrm{x}-\mathrm{y}), \sec \mathrm{x}\) and \(\mathrm{sec}(\mathrm{x}+\mathrm{y})\) are in A. P., then \(\cos x \sec (y / 2)=\ldots \ldots \ldots(y \neq 2 n \pi, n \in I)\) \(\begin{array}{llll}\text { (A) } \pm \sqrt{2} & \text { (B) } \pm(1 / \sqrt{2}) & \text { (C) } \pm 2 & \text { (D) } \pm(1 / 2)\end{array}\)
If \(\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots \mathrm{a}_{10}\) be in A. P., \(\left(1 / \mathrm{h}_{1}\right),\left(1 / \mathrm{h}_{2}\right) \ldots\left[1 / \mathrm{h}_{10}\right)\) be in A. \(P\) and \(a_{1}=h_{1}=2, a_{10}=h_{10}=3\) then \(a_{4} h_{7}=\) (A) \((1 / 6)\) (B) 6 (C) 3 (D) 2
The greatest value of \(n\) for which \(1+(1 / 2)+\left(1 / 2^{2}\right)+\ldots\) \(+\left(1 / 2^{\mathrm{n}}\right)<2\) is \((\mathrm{n} \in \mathrm{N})\) (A) 100 (B) 10 (C) 1000 (D) none of these
The sum of the series \(a-(a+d)+(a+2 d)-(a+3 d)+\ldots u p\) to 50 terms is \((\mathrm{A})-50 \mathrm{~d}\) (B) \(25 \mathrm{~d}\) (C) \(a+50 d\) (D) \(-25 \mathrm{~d}\)
\([1 /(2 \times 5)]+[1 /(5 \times 8)]+[1 /(8 \times 11)]+\ldots 100\) terms (A) \([(25) /(160)]\) (B) \((1 / 6)\) (C) \([(25) /(151)]\) (D) \([(25) /(152)]\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.