Chapter 8: Problem 604
If \((666 \ldots \text { n times })^{2}+(8888 \ldots\) n times \()=(4444 \ldots \mathrm{K}\) times \()\) then \(\mathrm{K}=\) (A) \(n+1\) (B) \(\mathrm{n}\) (C) \(2 \mathrm{n}\) (D) \(\mathrm{n}^{2}\)
Chapter 8: Problem 604
If \((666 \ldots \text { n times })^{2}+(8888 \ldots\) n times \()=(4444 \ldots \mathrm{K}\) times \()\) then \(\mathrm{K}=\) (A) \(n+1\) (B) \(\mathrm{n}\) (C) \(2 \mathrm{n}\) (D) \(\mathrm{n}^{2}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIf the angles \(\mathrm{A}<\mathrm{B}<\mathrm{C}\) of a \(\triangle \mathrm{ABC}\) are in \(\mathrm{A} . \mathrm{P}\). then (A) \(c^{2}=a^{2}+b^{2}-a b\) (B) \(c^{2}=a^{2}+b^{2}\) (C) \(b^{2}=a^{2}+c^{2}-a c\) (D) \(a^{2}=b^{2}+c^{2}-b c\)
If \([(b+c-a) / a],[(c+a-b) / b],[(a+b-c) / c]\) are in A. \(P\) then \(\mathrm{a}, \mathrm{b}, \mathrm{c}\) are in (A) G P. (B) A. P. (C) H. P. (D) A. G P.
Sum to infinity of the series \(1+(4 / 5)+\left(7 / 5^{2}\right)+\left(10 / 5^{3}\right)+\ldots\) is (A) \((5 / 16)\) (B) \((35 / 16)\) (C) \((16 / 35)\) (D) \((7 / 16)\)
If the first, second and last terms of an A. P. are a, b and \(3 a\) respectively, the sum of the series is (A) \(\left[\left(4 a^{2}\right) /(b-a)\right]\) (B) \(\left[\left(2 a^{2}+2 a b\right) /(b-a)\right]\) (C) \(\left[\left(2 a b+a^{2}\right) /(b-a)\right]\) (D) \(\left[\left(2 a^{2}-2 a b\right) /(a-b)\right]\)
\(2+12+36+80+\ldots \mathrm{n}\) terms \(=\) (A) \([\\{\mathrm{n}(\mathrm{n}+1)(\mathrm{n}+2)(3 \mathrm{n}+5) \overline{\\} /(24})]\) (B) \([\\{n(n+1)(n+2)(3 n+1)\\} /(12)]\) (C) \([\\{n(n+1)(n+3)(n+5)\\} /(24)]\) (D) \([\\{n(n+1)(n+2)(n+3)\\} /(12)]\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.