Chapter 8: Problem 608
If \(\mathrm{S}_{1}, \mathrm{~S}_{2}, \mathrm{~S}_{3}, \ldots \mathrm{S}_{\mathrm{n}}\) are the sums of infinite G. P.s. whose first terms are \(1,2,3, \ldots, \mathrm{n}\) and whose common ratios are \((1 / 2)\), \((1 / 3),(1 / 4), \ldots[1 /(\mathrm{n}+1)]\) respectively, then \(^{\mathrm{n}} \sum_{\mathrm{i}=1} \mathrm{~S}_{\mathrm{i}}=\) (A) \([\\{n(n+3)\\} / 2]\) (B) \([\\{n(n+4)\\} / 2]\) (C) \([\\{n(n-3)\\} / 2]\) (D) \([\\{n(n+1)\\} / 2]\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.