Chapter 8: Problem 610
\(1+5+14+30+\ldots \mathrm{n}\) terms \(=\) (A) \([\\{(n+2)(n+3)\\} /(12)]\) (B) \([\\{n(n+1)(n+5)\\} /(12)]\) (C) \([\\{n(n+2)(n+3)\\} /(12)]\) (D) \(\left[\left\\{n(n+1)^{2}(n+2)\right\\} /(12)\right]\)
Chapter 8: Problem 610
\(1+5+14+30+\ldots \mathrm{n}\) terms \(=\) (A) \([\\{(n+2)(n+3)\\} /(12)]\) (B) \([\\{n(n+1)(n+5)\\} /(12)]\) (C) \([\\{n(n+2)(n+3)\\} /(12)]\) (D) \(\left[\left\\{n(n+1)^{2}(n+2)\right\\} /(12)\right]\)
All the tools & learning materials you need for study success - in one app.
Get started for freeThe nth term of an A. P. is \(\mathrm{p}^{2}\) and the sum of the first \(\mathrm{n}\) terms is \(\mathrm{s}^{2}\) The first term is (A) \(\left[\left(\mathrm{p}^{2} \mathrm{n}+2 \mathrm{~s}^{2}\right) / \mathrm{n}\right]\) (B) \(\left[\left(2 \mathrm{~s}^{2}+\mathrm{p}^{2} \mathrm{n}\right) / \mathrm{n}^{2}\right]\) (C) \(\left[\left(\mathrm{ps}^{2}-\mathrm{p}^{2} \mathrm{~s}\right) / \mathrm{n}\right]\) (D) \(\left[\left(2 \mathrm{~s}^{2}-\mathrm{p}^{2} \mathrm{n}\right) / \mathrm{n}\right]\)
If \(\left[\left(a^{n+1}+b^{n+1}\right) /\left(a^{n}+b^{n}\right)\right]\) is \(H .\) M. of \(a\) and \(b\) then \(n=\) \(\left(a, b \in R^{+} \quad a \neq b\right)\) (A) 0 (B) - 1 (C) \(-(1 / 2)\) (D) \(-2\)
The greatest value of \(n\) for which \(1+(1 / 2)+\left(1 / 2^{2}\right)+\ldots\) \(+\left(1 / 2^{\mathrm{n}}\right)<2\) is \((\mathrm{n} \in \mathrm{N})\) (A) 100 (B) 10 (C) 1000 (D) none of these
Find out three numbers which are in G. P. such that their summation is 13 and the sum of their squares is 91 (A) \(3,1,9\) (B) \(1,3,9\) (C) \(1,9,3\) (D) \((13 / 3),(13 / 3),(13 / 3)\)
\(2+12+36+80+\ldots \mathrm{n}\) terms \(=\) (A) \([\\{\mathrm{n}(\mathrm{n}+1)(\mathrm{n}+2)(3 \mathrm{n}+5) \overline{\\} /(24})]\) (B) \([\\{n(n+1)(n+2)(3 n+1)\\} /(12)]\) (C) \([\\{n(n+1)(n+3)(n+5)\\} /(24)]\) (D) \([\\{n(n+1)(n+2)(n+3)\\} /(12)]\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.