Chapter 8: Problem 610
\(1+5+14+30+\ldots \mathrm{n}\) terms \(=\) (A) \([\\{(n+2)(n+3)\\} /(12)]\) (B) \([\\{n(n+1)(n+5)\\} /(12)]\) (C) \([\\{n(n+2)(n+3)\\} /(12)]\) (D) \(\left[\left\\{n(n+1)^{2}(n+2)\right\\} /(12)\right]\)
Chapter 8: Problem 610
\(1+5+14+30+\ldots \mathrm{n}\) terms \(=\) (A) \([\\{(n+2)(n+3)\\} /(12)]\) (B) \([\\{n(n+1)(n+5)\\} /(12)]\) (C) \([\\{n(n+2)(n+3)\\} /(12)]\) (D) \(\left[\left\\{n(n+1)^{2}(n+2)\right\\} /(12)\right]\)
All the tools & learning materials you need for study success - in one app.
Get started for free
If \(\mathrm{S}_{\mathrm{n}}=\mathrm{an}+\mathrm{bn}^{2}\), for an A. P. where a and \(\mathrm{b}\) are constants, then common difference of A. P. will be (A) \(2 \mathrm{~b}\) (B) \(a+b\) (C) \(2 \mathrm{a}\) (D) \(a-b\)
The nth term of an A. P. is \(\mathrm{p}^{2}\) and the sum of the first \(\mathrm{n}\) terms is \(\mathrm{s}^{2}\) The first term is (A) \(\left[\left(\mathrm{p}^{2} \mathrm{n}+2 \mathrm{~s}^{2}\right) / \mathrm{n}\right]\) (B) \(\left[\left(2 \mathrm{~s}^{2}+\mathrm{p}^{2} \mathrm{n}\right) / \mathrm{n}^{2}\right]\) (C) \(\left[\left(\mathrm{ps}^{2}-\mathrm{p}^{2} \mathrm{~s}\right) / \mathrm{n}\right]\) (D) \(\left[\left(2 \mathrm{~s}^{2}-\mathrm{p}^{2} \mathrm{n}\right) / \mathrm{n}\right]\)
The series \(1.1 !+2.2 !+3.3 !+\ldots+\) n. \(n !=\) \((\mathrm{A})(\mathrm{n}+1) !-\mathrm{n}\) (B) \((n+1) !-1\) (C) \(n !-1+n\) (D) \(n !+1-n\)
If a set \(\mathrm{A}=\\{3,7,11, \ldots, 407\\}\) and a set \(\mathrm{B}=\\{2,9,16, \ldots, 709\\}\) then \(\mathrm{n}(\mathrm{A} \cap \mathrm{B})=\) (A) 13 (B) 14 (C) 15 (D) 16
Sum to infinity of the series \(1+(4 / 5)+\left(7 / 5^{2}\right)+\left(10 / 5^{3}\right)+\ldots\) is (A) \((5 / 16)\) (B) \((35 / 16)\) (C) \((16 / 35)\) (D) \((7 / 16)\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.