Chapter 8: Problem 624
Find out three numbers which are in G. P. such that their summation is 13 and the sum of their squares is 91 (A) \(3,1,9\) (B) \(1,3,9\) (C) \(1,9,3\) (D) \((13 / 3),(13 / 3),(13 / 3)\)
Chapter 8: Problem 624
Find out three numbers which are in G. P. such that their summation is 13 and the sum of their squares is 91 (A) \(3,1,9\) (B) \(1,3,9\) (C) \(1,9,3\) (D) \((13 / 3),(13 / 3),(13 / 3)\)
All the tools & learning materials you need for study success - in one app.
Get started for free
If \((1 / a),(1 / b),(1 / c)\) are in A. P., then \([(1 / a)+(1 / b)-(1 / c)]\) \([(1 / b)+(1 / c)-(1 / a)]=\) (A) \(\left[\left(4 b^{2}-3 a c\right) /(a b c)\right]\) (B) \((4 / \mathrm{ac})-\left(3 / \mathrm{b}^{2}\right)\) (C) \((4 / \mathrm{ac})-\left(5 / \mathrm{b}^{2}\right)\) (D) \(\left[\left(4 b^{2}+3 a c\right) /\left(a b^{2} c\right)\right]\)
The coefficient of \(x^{8}\) in the product \((x+1)(x+2)(x+3) \ldots\) \((\mathrm{x}+10)\) is (A) 1024 (B) 1300 (C) 1320 (D) 1360
Sum of products of first n natural numbers taken two at a time is (A) \(\left[\left\\{\overline{ \left.n\left(n^{2}-1\right)(3 n+2)\right\\} /(24)}\right]\right.\) (B) \(\left[\left\\{n(n+1)^{2}(3 n+2)\right\\} /(72)\right]\) (C) \(\left[\left\\{n^{2}(n+1)(3 n+2)\right\\} /(48)\right]\) (D) \([\\{n(n+1)(n+2)(3 n+2)\\} /(96)]\)
\(\tan ^{-1}(1 / 3)+\tan ^{-1}(1 / 7)+\tan ^{-1}(1 / 13)+\ldots+\tan ^{-1}[1 /(9703)]\) (A) \(\begin{array}{lll}\text { (B) }(\pi / 6) & \text { (C) }(\pi / 3) & \text { (D) } \tan ^{-1}(0.98)\end{array}\)
\((1 / 3)+\left(2 / 3^{2}\right)+\left(1 / 3^{3}\right)+\left(2 / 3^{4}\right)+\left(1 / 3^{5}\right)+\left(2 / 3^{6}\right)+\ldots\) up to \(\infty=\) (A) \((1 / 8)\) (B) \((3 / 8)\) (C) \((7 / 8)\) (D) \((5 / 8)\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.