Chapter 8: Problem 628
If \([(b+c-a) / a],[(c+a-b) / b],[(a+b-c) / c]\) are in A. \(P\) then \(\mathrm{a}, \mathrm{b}, \mathrm{c}\) are in (A) G P. (B) A. P. (C) H. P. (D) A. G P.
Chapter 8: Problem 628
If \([(b+c-a) / a],[(c+a-b) / b],[(a+b-c) / c]\) are in A. \(P\) then \(\mathrm{a}, \mathrm{b}, \mathrm{c}\) are in (A) G P. (B) A. P. (C) H. P. (D) A. G P.
All the tools & learning materials you need for study success - in one app.
Get started for freeIf \(\mathrm{S}_{1}, \mathrm{~S}_{2}, \mathrm{~S}_{3}, \ldots \mathrm{S}_{\mathrm{n}}\) are the sums of infinite G. P.s. whose first terms are \(1,2,3, \ldots, \mathrm{n}\) and whose common ratios are \((1 / 2)\), \((1 / 3),(1 / 4), \ldots[1 /(\mathrm{n}+1)]\) respectively, then \(^{\mathrm{n}} \sum_{\mathrm{i}=1} \mathrm{~S}_{\mathrm{i}}=\) (A) \([\\{n(n+3)\\} / 2]\) (B) \([\\{n(n+4)\\} / 2]\) (C) \([\\{n(n-3)\\} / 2]\) (D) \([\\{n(n+1)\\} / 2]\)
If a set \(\mathrm{A}=\\{3,7,11, \ldots, 407\\}\) and a set \(\mathrm{B}=\\{2,9,16, \ldots, 709\\}\) then \(\mathrm{n}(\mathrm{A} \cap \mathrm{B})=\) (A) 13 (B) 14 (C) 15 (D) 16
\(\tan ^{-1}(1 / 3)+\tan ^{-1}(1 / 7)+\tan ^{-1}(1 / 13)+\ldots+\tan ^{-1}[1 /(9703)]\) (A) \(\begin{array}{lll}\text { (B) }(\pi / 6) & \text { (C) }(\pi / 3) & \text { (D) } \tan ^{-1}(0.98)\end{array}\)
If the \(\mathrm{H}\). M. of a and \(\mathrm{c}\) is \(\mathrm{b}\), G. \(\mathrm{M}\). of \(\mathrm{b}\) and \(\mathrm{d}\) is \(\mathrm{c}\) and \(\mathrm{A} . \mathrm{M} .\) of \(c\) and e is \(\mathrm{d}\), then the G. M. of a and e is (A) \(b\) (B) \(c\) (C) \(\mathrm{d}\) (D) ae
If the angles \(\mathrm{A}<\mathrm{B}<\mathrm{C}\) of a \(\triangle \mathrm{ABC}\) are in \(\mathrm{A} . \mathrm{P}\). then (A) \(c^{2}=a^{2}+b^{2}-a b\) (B) \(c^{2}=a^{2}+b^{2}\) (C) \(b^{2}=a^{2}+c^{2}-a c\) (D) \(a^{2}=b^{2}+c^{2}-b c\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.