Chapter 8: Problem 628
If \([(b+c-a) / a],[(c+a-b) / b],[(a+b-c) / c]\) are in A. \(P\) then \(\mathrm{a}, \mathrm{b}, \mathrm{c}\) are in (A) G P. (B) A. P. (C) H. P. (D) A. G P.
Chapter 8: Problem 628
If \([(b+c-a) / a],[(c+a-b) / b],[(a+b-c) / c]\) are in A. \(P\) then \(\mathrm{a}, \mathrm{b}, \mathrm{c}\) are in (A) G P. (B) A. P. (C) H. P. (D) A. G P.
All the tools & learning materials you need for study success - in one app.
Get started for freeThe sum of the numbers \(1+2.2+3.2^{2}+4.2^{3}+\ldots+50.2^{49}\) is (A) \(1+49.2^{49}\) (B) \(1+49.2^{50}\) (C) \(1+50.2^{49}\) (D) \(1+50.2^{50}\)
If \(\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots \mathrm{a}_{10}\) be in A. P., \(\left(1 / \mathrm{h}_{1}\right),\left(1 / \mathrm{h}_{2}\right) \ldots\left[1 / \mathrm{h}_{10}\right)\) be in A. \(P\) and \(a_{1}=h_{1}=2, a_{10}=h_{10}=3\) then \(a_{4} h_{7}=\) (A) \((1 / 6)\) (B) 6 (C) 3 (D) 2
If the function \(\mathrm{f}\) satisfies the relation \(\mathrm{f}(\mathrm{x}+\mathrm{y})=\mathrm{f}(\mathrm{x}) \mathrm{f}(\mathrm{y})\) for all \(\mathrm{x}, \mathrm{y} \in \mathrm{N}\), Further if \(\mathrm{f}(1)=3\) and \(n_{r=1} f(a+r)=(81 / 2)\left(3^{n}-1\right)\) then \(a=\) (A) 4 (B) 2 (C) 1 (D) 3
If an A. P., \(\mathrm{T}_{35}=-50\) and \(\mathrm{d}=-3\) then \(\mathrm{S}_{35}=\) (A) 35 (B) 38 (C) 32 (D) 29
\(1+5+14+30+\ldots \mathrm{n}\) terms \(=\) (A) \([\\{(n+2)(n+3)\\} /(12)]\) (B) \([\\{n(n+1)(n+5)\\} /(12)]\) (C) \([\\{n(n+2)(n+3)\\} /(12)]\) (D) \(\left[\left\\{n(n+1)^{2}(n+2)\right\\} /(12)\right]\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.