Chapter 8: Problem 636
The series \(1.1 !+2.2 !+3.3 !+\ldots+\) n. \(n !=\) \((\mathrm{A})(\mathrm{n}+1) !-\mathrm{n}\) (B) \((n+1) !-1\) (C) \(n !-1+n\) (D) \(n !+1-n\)
Chapter 8: Problem 636
The series \(1.1 !+2.2 !+3.3 !+\ldots+\) n. \(n !=\) \((\mathrm{A})(\mathrm{n}+1) !-\mathrm{n}\) (B) \((n+1) !-1\) (C) \(n !-1+n\) (D) \(n !+1-n\)
All the tools & learning materials you need for study success - in one app.
Get started for free\(1+5+14+30+\ldots \mathrm{n}\) terms \(=\) (A) \([\\{(n+2)(n+3)\\} /(12)]\) (B) \([\\{n(n+1)(n+5)\\} /(12)]\) (C) \([\\{n(n+2)(n+3)\\} /(12)]\) (D) \(\left[\left\\{n(n+1)^{2}(n+2)\right\\} /(12)\right]\)
The nth term of an A. P. is \(\mathrm{p}^{2}\) and the sum of the first \(\mathrm{n}\) terms is \(\mathrm{s}^{2}\) The first term is (A) \(\left[\left(\mathrm{p}^{2} \mathrm{n}+2 \mathrm{~s}^{2}\right) / \mathrm{n}\right]\) (B) \(\left[\left(2 \mathrm{~s}^{2}+\mathrm{p}^{2} \mathrm{n}\right) / \mathrm{n}^{2}\right]\) (C) \(\left[\left(\mathrm{ps}^{2}-\mathrm{p}^{2} \mathrm{~s}\right) / \mathrm{n}\right]\) (D) \(\left[\left(2 \mathrm{~s}^{2}-\mathrm{p}^{2} \mathrm{n}\right) / \mathrm{n}\right]\)
For all \(x, y \in R^{+}\) the value of \(\left[\left\\{\left(1+x+x^{2}\right)\left(1+y+y^{2}\right)\right\\} /(x y)\right]\) \(=\) (A) \(<9\) (B) \(\leq 9\) \((\mathrm{C})>9\) \((\mathrm{D}) \geq 9\)
\(\left(1^{3} / 1\right)+\left[\left(1^{3}+2^{3}\right) /(1+2)\right]+\left[\left(1^{3}+2^{3}+3^{3}\right) /(1+2+3)\right]\) \(+\ldots 15\) terms (A) 446 (B) 680 (C) 600 (D) 540
Sum of products of first n natural numbers taken two at a time is (A) \(\left[\left\\{\overline{ \left.n\left(n^{2}-1\right)(3 n+2)\right\\} /(24)}\right]\right.\) (B) \(\left[\left\\{n(n+1)^{2}(3 n+2)\right\\} /(72)\right]\) (C) \(\left[\left\\{n^{2}(n+1)(3 n+2)\right\\} /(48)\right]\) (D) \([\\{n(n+1)(n+2)(3 n+2)\\} /(96)]\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.