Chapter 8: Problem 639
If a set \(\mathrm{A}=\\{3,7,11, \ldots, 407\\}\) and a set \(\mathrm{B}=\\{2,9,16, \ldots, 709\\}\) then \(\mathrm{n}(\mathrm{A} \cap \mathrm{B})=\) (A) 13 (B) 14 (C) 15 (D) 16
Chapter 8: Problem 639
If a set \(\mathrm{A}=\\{3,7,11, \ldots, 407\\}\) and a set \(\mathrm{B}=\\{2,9,16, \ldots, 709\\}\) then \(\mathrm{n}(\mathrm{A} \cap \mathrm{B})=\) (A) 13 (B) 14 (C) 15 (D) 16
All the tools & learning materials you need for study success - in one app.
Get started for freeThe sum of \(\mathrm{n}\) terms of the series \(12+16+24+40+\ldots\) is (A) \(8\left(2^{\mathrm{n}}-1\right)+8 \mathrm{n}\) (B) \(4\left(2^{\mathrm{n}}-1\right)+8 \mathrm{n}\) (C) \(2\left(2^{n}-1\right)+6 n\) (D) \(3\left(2^{\mathrm{n}}-1\right)+8 \mathrm{n}\)
If the A. M. of two numbers a and \(b\) is equal to \(\sqrt{(10) \text { times }}\) their G. M. then \([(a-b) /(a+b)]=\) (A) \([\sqrt{(10) / 3]}\) (B) \(3 \sqrt{(10)}\) (C) \([9 /(10)]\) (D) \([3 / \sqrt{(10)}]\)
6 th term of the sequence \((7 / 3),(35 / 6),[(121) /(12)]\), \([(335) /(24)], \ldots .\) is (A) \([(2113) /(96)]\) (B) \([(2112) /(96)]\) (C) \([(865) /(48)]\) (D) \([(2111) /(96)]\)
The sum of the series \((3 / 4)+(5 / 36)+[7 /(144)], \ldots\) up to 11 terms is (A) \([(120) \overline{/(121)]}\) (B) \([(143) /(144)]\) (C) 1 (A) \([(144) /(143)]\)
If A is the A. M. between a and b, then \([(A-2 b) /(A-a)]+[(A-2 a) /(A-b)]=\) (A) \(-8\) (B) 2 (C) 4 (D) \(-4\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.