Chapter 8: Problem 639
If a set \(\mathrm{A}=\\{3,7,11, \ldots, 407\\}\) and a set \(\mathrm{B}=\\{2,9,16, \ldots, 709\\}\) then \(\mathrm{n}(\mathrm{A} \cap \mathrm{B})=\) (A) 13 (B) 14 (C) 15 (D) 16
Chapter 8: Problem 639
If a set \(\mathrm{A}=\\{3,7,11, \ldots, 407\\}\) and a set \(\mathrm{B}=\\{2,9,16, \ldots, 709\\}\) then \(\mathrm{n}(\mathrm{A} \cap \mathrm{B})=\) (A) 13 (B) 14 (C) 15 (D) 16
All the tools & learning materials you need for study success - in one app.
Get started for freeIf \((1 / a),(1 / b),(1 / c)\) are in A. P., then \([(1 / a)+(1 / b)-(1 / c)]\) \([(1 / b)+(1 / c)-(1 / a)]=\) (A) \(\left[\left(4 b^{2}-3 a c\right) /(a b c)\right]\) (B) \((4 / \mathrm{ac})-\left(3 / \mathrm{b}^{2}\right)\) (C) \((4 / \mathrm{ac})-\left(5 / \mathrm{b}^{2}\right)\) (D) \(\left[\left(4 b^{2}+3 a c\right) /\left(a b^{2} c\right)\right]\)
If the sum of first 101 terms of an A. P. is 0 and If 1 be the first term of the A. P. then the sum of next 100 terms is \((\mathrm{A})-101\) (B) 201 (C) \(-201\) (D) \(-200\)
If \(\alpha, \beta\) are the roots of \(a x^{2}-b x+c=o\) and \(\gamma, \delta\) are the roots of \(\mathrm{px}^{2}-\mathrm{qx}+\mathrm{r}=\mathrm{o}\) and If \(\alpha, \beta, \gamma, \delta\) are in G. P. then the common ratio is \(=\) (A) \((\text { ar } / \mathrm{cp})^{(1 / 4)}\) (B) \((\mathrm{ar} / \mathrm{cp})^{(1 / 8)}\) (C) \((\mathrm{ap} / \mathrm{cr})^{(1 / 4)}\) (D) \((\mathrm{ar} / \mathrm{cp})^{[(-1) / 4]}\)
\(\left(1^{3} / 1\right)+\left[\left(1^{3}+2^{3}\right) /(1+2)\right]+\left[\left(1^{3}+2^{3}+3^{3}\right) /(1+2+3)\right]\) \(+\ldots 15\) terms (A) 446 (B) 680 (C) 600 (D) 540
If \([1 /(\mathrm{b}-\mathrm{c})],[1 /(2 \mathrm{~b}-\mathrm{x})]\) and \([1 /(\mathrm{b}-\mathrm{a})]\) are in A. P., then \(\mathrm{a}-(\mathrm{x} / 2), \mathrm{b}-(\mathrm{x} / 2), \mathrm{c}-(\mathrm{x} / 2)\) are in (A) A. P. (B) G. P. (C) H. P. (D) A. G P.
What do you think about this solution?
We value your feedback to improve our textbook solutions.