Chapter 8: Problem 650
If \(\log _{3} 2, \log _{3}\left(2^{x}-5\right)\) and \(\log _{3}\left[2^{x}-(7 / 2)\right]\) are in A. P. then \(\mathrm{x}=\) (A) 2 (B) 3 (C) 4 (D) 2 or 3
Chapter 8: Problem 650
If \(\log _{3} 2, \log _{3}\left(2^{x}-5\right)\) and \(\log _{3}\left[2^{x}-(7 / 2)\right]\) are in A. P. then \(\mathrm{x}=\) (A) 2 (B) 3 (C) 4 (D) 2 or 3
All the tools & learning materials you need for study success - in one app.
Get started for freeIf \(\left\\{a_{n}\right\\}\) is an A. P. then \(a_{1}^{2}-a_{2}^{2}+a_{3}^{2}-a_{4}^{2}+\ldots+a_{99}^{2}-a_{100}^{2}\) (A) \((50 / 99)\left(\mathrm{a}_{1}^{2}-\mathrm{a}_{100}^{2}\right)\) (B) \([(1000) /(99)]\left(\mathrm{a}_{100}^{2}-\mathrm{a}_{1}^{2}\right)\) (C) \((50 / 51)\left(\mathrm{a}_{1}^{2}+\mathrm{a}_{100}^{2}\right)\) (D) None of this
The greatest value of \(n\) for which \(1+(1 / 2)+\left(1 / 2^{2}\right)+\ldots\) \(+\left(1 / 2^{\mathrm{n}}\right)<2\) is \((\mathrm{n} \in \mathrm{N})\) (A) 100 (B) 10 (C) 1000 (D) none of these
Find out four numbers such that, first three numbers are in G. P., last three numbers are in A. P. having common difference 6, first and last numbers are same. (A) \(8,4,2,8\) (B) \(-8,4,-2,-8\) (C) \(8,-4,2,8\) (D) \(-8,-4,-2,-8\)
If the \(1^{\text {st }}\) term and common ratio of a G. P. are 1 and 2 respectively then \(\mathrm{s}_{1}+\mathrm{s}_{3}+\mathrm{s}_{5}+\ldots+\mathrm{s}_{2 \mathrm{n}-1}=\) (A) \((1 / 3)\left(2^{2 n}-5 n+4\right)\) (B) \((1 / 3)\left(2^{2 n+1}-5 n\right)\) (C) \((1 / 3)\left(2^{2 n+1}-3 n-2\right)\) (D) \((1 / 3)\left(2^{2 n+1}-5 n^{2}\right)\)
The sum of the series \(a-(a+d)+(a+2 d)-(a+3 d)+\ldots u p\) to 50 terms is \((\mathrm{A})-50 \mathrm{~d}\) (B) \(25 \mathrm{~d}\) (C) \(a+50 d\) (D) \(-25 \mathrm{~d}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.