Chapter 8: Problem 650
If \(\log _{3} 2, \log _{3}\left(2^{x}-5\right)\) and \(\log _{3}\left[2^{x}-(7 / 2)\right]\) are in A. P. then \(\mathrm{x}=\) (A) 2 (B) 3 (C) 4 (D) 2 or 3
Chapter 8: Problem 650
If \(\log _{3} 2, \log _{3}\left(2^{x}-5\right)\) and \(\log _{3}\left[2^{x}-(7 / 2)\right]\) are in A. P. then \(\mathrm{x}=\) (A) 2 (B) 3 (C) 4 (D) 2 or 3
All the tools & learning materials you need for study success - in one app.
Get started for freeIf \(\mathrm{S}_{\mathrm{n}}=\mathrm{an}+\mathrm{bn}^{2}\), for an A. P. where a and \(\mathrm{b}\) are constants, then common difference of A. P. will be (A) \(2 \mathrm{~b}\) (B) \(a+b\) (C) \(2 \mathrm{a}\) (D) \(a-b\)
\(\tan ^{-1}(1 / 3)+\tan ^{-1}(1 / 7)+\tan ^{-1}(1 / 13)+\ldots+\tan ^{-1}[1 /(9703)]\) (A) \(\begin{array}{lll}\text { (B) }(\pi / 6) & \text { (C) }(\pi / 3) & \text { (D) } \tan ^{-1}(0.98)\end{array}\)
A. \(\mathrm{M}\) of the three numbers which are in G. P. is \([(14) / 3]\) If adding 1 in first and second number and subtracting 1 from the third number, resulting numbers are in \(\mathrm{A} . \mathrm{P}\). then the sum of the squares of original three numbers is (A) 91 (B) 80 (C) 84 (D) 88
\(2+12+36+80+\ldots \mathrm{n}\) terms \(=\) (A) \([\\{\mathrm{n}(\mathrm{n}+1)(\mathrm{n}+2)(3 \mathrm{n}+5) \overline{\\} /(24})]\) (B) \([\\{n(n+1)(n+2)(3 n+1)\\} /(12)]\) (C) \([\\{n(n+1)(n+3)(n+5)\\} /(24)]\) (D) \([\\{n(n+1)(n+2)(n+3)\\} /(12)]\)
If the pth term of a G. P. is \(x\) and \(q\) th term is \(y\), then the nth term is (A) \(\left[x^{\overline{n-p} / y^{n}-q}\right]^{[1 /(p-q)]}\) (B) \(\left[x^{n+q} / y^{n+p}\right]^{[1 /(p-q)]}\) (C) \(\left[x^{n-q} / y^{n-p}\right]^{[1 /(p-q)]}\) (D) \(\left[x^{n-q} / y^{n-p}\right]^{[1 /(p+q)]}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.