Chapter 8: Problem 656
If sec \((\mathrm{x}-\mathrm{y}), \sec \mathrm{x}\) and \(\mathrm{sec}(\mathrm{x}+\mathrm{y})\) are in A. P., then \(\cos x \sec (y / 2)=\ldots \ldots \ldots(y \neq 2 n \pi, n \in I)\) \(\begin{array}{llll}\text { (A) } \pm \sqrt{2} & \text { (B) } \pm(1 / \sqrt{2}) & \text { (C) } \pm 2 & \text { (D) } \pm(1 / 2)\end{array}\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.