Chapter 8: Problem 657
\((1 / 2)+(3 / 4)+(7 / 8)+(15 / 16)+\ldots \mathrm{n}\) terms \(=\) (A) \(n+2^{-n}-1\) (B) \(2^{-n}-n+1\) (C) \(\left[\left(\mathrm{n}^{\mathrm{n}}-2+1\right) / 4\right]\) (D) \(\mathrm{n}^{-\mathrm{n}}+2^{-\mathrm{n}}-1\)
Chapter 8: Problem 657
\((1 / 2)+(3 / 4)+(7 / 8)+(15 / 16)+\ldots \mathrm{n}\) terms \(=\) (A) \(n+2^{-n}-1\) (B) \(2^{-n}-n+1\) (C) \(\left[\left(\mathrm{n}^{\mathrm{n}}-2+1\right) / 4\right]\) (D) \(\mathrm{n}^{-\mathrm{n}}+2^{-\mathrm{n}}-1\)
All the tools & learning materials you need for study success - in one app.
Get started for free\(0.4+0.44+0.444+\ldots\) to \(2 \mathrm{n}\) terms \(=\) (A) \((4 / 81)\left(18 \mathrm{n}+1+100^{-\mathrm{n}}\right)\) (B) \((4 / 81)\left(18 \mathrm{n}-1+100^{-\mathrm{n}}\right)\) (C) \((4 / 81)\left(18 \mathrm{n}-1+10^{-\mathrm{n}}\right)\) (D) \((4 / 81)\left(18 n-1+100^{n}\right)\)
If the sum of the roots of the equation \(a x^{2}+b x+c=0\) is equal to the sum of the squares of their reciprocals then \(\mathrm{bc}^{2}\), \(\mathrm{ca}^{2}, \mathrm{ab}^{2}\) are in (A) A. P. (B) G. P. (C) H. P. (D) A. G. P.
First term of a G. P. of \(2 \mathrm{n}\) terms is \(\mathrm{a}\), and the last term is 1 . The product of all the terms of the G. P. is (A) \((\mathrm{a} \ell)(\mathrm{n} / 2)\) (B) \((\mathrm{a} \ell)^{(\mathrm{n}-1)}\) (C) \((\mathrm{a} \ell)^{\mathrm{n}}\) (D) \((\mathrm{a} \ell)^{2 \mathrm{n}}\)
The sum of the series \(a-(a+d)+(a+2 d)-(a+3 d)+\ldots u p\) to 50 terms is \((\mathrm{A})-50 \mathrm{~d}\) (B) \(25 \mathrm{~d}\) (C) \(a+50 d\) (D) \(-25 \mathrm{~d}\)
If sec \((\mathrm{x}-\mathrm{y}), \sec \mathrm{x}\) and \(\mathrm{sec}(\mathrm{x}+\mathrm{y})\) are in A. P., then \(\cos x \sec (y / 2)=\ldots \ldots \ldots(y \neq 2 n \pi, n \in I)\) \(\begin{array}{llll}\text { (A) } \pm \sqrt{2} & \text { (B) } \pm(1 / \sqrt{2}) & \text { (C) } \pm 2 & \text { (D) } \pm(1 / 2)\end{array}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.