Chapter 8: Problem 659
The sum of the series \((3 / 4)+(5 / 36)+[7 /(144)], \ldots\) up to 11 terms is (A) \([(120) \overline{/(121)]}\) (B) \([(143) /(144)]\) (C) 1 (A) \([(144) /(143)]\)
Chapter 8: Problem 659
The sum of the series \((3 / 4)+(5 / 36)+[7 /(144)], \ldots\) up to 11 terms is (A) \([(120) \overline{/(121)]}\) (B) \([(143) /(144)]\) (C) 1 (A) \([(144) /(143)]\)
All the tools & learning materials you need for study success - in one app.
Get started for freeFind out four numbers such that, first three numbers are in G. P., last three numbers are in A. P. having common difference 6, first and last numbers are same. (A) \(8,4,2,8\) (B) \(-8,4,-2,-8\) (C) \(8,-4,2,8\) (D) \(-8,-4,-2,-8\)
If the function \(\mathrm{f}\) satisfies the relation \(\mathrm{f}(\mathrm{x}+\mathrm{y})=\mathrm{f}(\mathrm{x}) \mathrm{f}(\mathrm{y})\) for all \(\mathrm{x}, \mathrm{y} \in \mathrm{N}\), Further if \(\mathrm{f}(1)=3\) and \(n_{r=1} f(a+r)=(81 / 2)\left(3^{n}-1\right)\) then \(a=\) (A) 4 (B) 2 (C) 1 (D) 3
The nth term of an A. P. is \(\mathrm{p}^{2}\) and the sum of the first \(\mathrm{n}\) terms is \(\mathrm{s}^{2}\) The first term is (A) \(\left[\left(\mathrm{p}^{2} \mathrm{n}+2 \mathrm{~s}^{2}\right) / \mathrm{n}\right]\) (B) \(\left[\left(2 \mathrm{~s}^{2}+\mathrm{p}^{2} \mathrm{n}\right) / \mathrm{n}^{2}\right]\) (C) \(\left[\left(\mathrm{ps}^{2}-\mathrm{p}^{2} \mathrm{~s}\right) / \mathrm{n}\right]\) (D) \(\left[\left(2 \mathrm{~s}^{2}-\mathrm{p}^{2} \mathrm{n}\right) / \mathrm{n}\right]\)
If \([(b+c-a) / a],[(c+a-b) / b],[(a+b-c) / c]\) are in A. \(P\) then \(\mathrm{a}, \mathrm{b}, \mathrm{c}\) are in (A) G P. (B) A. P. (C) H. P. (D) A. G P.
First term of a G. P. of \(2 \mathrm{n}\) terms is \(\mathrm{a}\), and the last term is 1 . The product of all the terms of the G. P. is (A) \((\mathrm{a} \ell)(\mathrm{n} / 2)\) (B) \((\mathrm{a} \ell)^{(\mathrm{n}-1)}\) (C) \((\mathrm{a} \ell)^{\mathrm{n}}\) (D) \((\mathrm{a} \ell)^{2 \mathrm{n}}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.