Chapter 8: Problem 661
6 th term of the sequence \((7 / 3),(35 / 6),[(121) /(12)]\), \([(335) /(24)], \ldots .\) is (A) \([(2113) /(96)]\) (B) \([(2112) /(96)]\) (C) \([(865) /(48)]\) (D) \([(2111) /(96)]\)
Chapter 8: Problem 661
6 th term of the sequence \((7 / 3),(35 / 6),[(121) /(12)]\), \([(335) /(24)], \ldots .\) is (A) \([(2113) /(96)]\) (B) \([(2112) /(96)]\) (C) \([(865) /(48)]\) (D) \([(2111) /(96)]\)
All the tools & learning materials you need for study success - in one app.
Get started for free
A. \(\mathrm{M}\) of the three numbers which are in G. P. is \([(14) / 3]\) If adding 1 in first and second number and subtracting 1 from the third number, resulting numbers are in \(\mathrm{A} . \mathrm{P}\). then the sum of the squares of original three numbers is (A) 91 (B) 80 (C) 84 (D) 88
If \(\left\\{a_{n}\right\\}\) is an A. P. then \(a_{1}^{2}-a_{2}^{2}+a_{3}^{2}-a_{4}^{2}+\ldots+a_{99}^{2}-a_{100}^{2}\) (A) \((50 / 99)\left(\mathrm{a}_{1}^{2}-\mathrm{a}_{100}^{2}\right)\) (B) \([(1000) /(99)]\left(\mathrm{a}_{100}^{2}-\mathrm{a}_{1}^{2}\right)\) (C) \((50 / 51)\left(\mathrm{a}_{1}^{2}+\mathrm{a}_{100}^{2}\right)\) (D) None of this
If the harmonic mean and geometric mean of two numbers a and \(b\) are 4 and \(3 \sqrt{2}\) respectively then the interval \([a, b]=\) (A) \([3,6]\) (B) \([2,7]\) (C) \([4,5]\) (D) \([1,8]\)
In a \(\triangle \mathrm{ABC}\) angles \(\mathrm{A}, \mathrm{B}, \mathrm{C}\) are in increasing A. P. and \(\sin (B+2 C)=[(-1) / 2]\) then \(A=\) (A) \((3 \pi / 4)\) (B) \((\pi / 4)\) (C) \((5 \pi / 6)\) (D) \((\pi / 6)\)
If the \(1^{\text {st }}\) term and common ratio of a G. P. are 1 and 2 respectively then \(\mathrm{s}_{1}+\mathrm{s}_{3}+\mathrm{s}_{5}+\ldots+\mathrm{s}_{2 \mathrm{n}-1}=\) (A) \((1 / 3)\left(2^{2 n}-5 n+4\right)\) (B) \((1 / 3)\left(2^{2 n+1}-5 n\right)\) (C) \((1 / 3)\left(2^{2 n+1}-3 n-2\right)\) (D) \((1 / 3)\left(2^{2 n+1}-5 n^{2}\right)\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.