Chapter 8: Problem 663
The greatest value of \(n\) for which \(1+(1 / 2)+\left(1 / 2^{2}\right)+\ldots\) \(+\left(1 / 2^{\mathrm{n}}\right)<2\) is \((\mathrm{n} \in \mathrm{N})\) (A) 100 (B) 10 (C) 1000 (D) none of these
Chapter 8: Problem 663
The greatest value of \(n\) for which \(1+(1 / 2)+\left(1 / 2^{2}\right)+\ldots\) \(+\left(1 / 2^{\mathrm{n}}\right)<2\) is \((\mathrm{n} \in \mathrm{N})\) (A) 100 (B) 10 (C) 1000 (D) none of these
All the tools & learning materials you need for study success - in one app.
Get started for free\(1+5+14+30+\ldots \mathrm{n}\) terms \(=\) (A) \([\\{(n+2)(n+3)\\} /(12)]\) (B) \([\\{n(n+1)(n+5)\\} /(12)]\) (C) \([\\{n(n+2)(n+3)\\} /(12)]\) (D) \(\left[\left\\{n(n+1)^{2}(n+2)\right\\} /(12)\right]\)
If for the triangle whose perimeter is \(37 \mathrm{cms}\) and length of sides are in G. P. also the length of the smallest side is \(9 \mathrm{cms}\) then length of remaining two sides are and (A) 12,16 (B) 14,14 (C) 10,18 (D) 15,13
\(0.4+0.44+0.444+\ldots\) to \(2 \mathrm{n}\) terms \(=\) (A) \((4 / 81)\left(18 \mathrm{n}+1+100^{-\mathrm{n}}\right)\) (B) \((4 / 81)\left(18 \mathrm{n}-1+100^{-\mathrm{n}}\right)\) (C) \((4 / 81)\left(18 \mathrm{n}-1+10^{-\mathrm{n}}\right)\) (D) \((4 / 81)\left(18 n-1+100^{n}\right)\)
If the sum of first 101 terms of an A. P. is 0 and If 1 be the first term of the A. P. then the sum of next 100 terms is \((\mathrm{A})-101\) (B) 201 (C) \(-201\) (D) \(-200\)
If the sum of the roots of the equation \(a x^{2}+b x+c=0\) is equal to the sum of the squares of their reciprocals then \(\mathrm{bc}^{2}\), \(\mathrm{ca}^{2}, \mathrm{ab}^{2}\) are in (A) A. P. (B) G. P. (C) H. P. (D) A. G. P.
What do you think about this solution?
We value your feedback to improve our textbook solutions.