Chapter 8: Problem 670
If \(\mathrm{a}, 4, \mathrm{~b}\) are in \(\mathrm{A} . \mathrm{P}\). and \(\mathrm{a}, 2, \mathrm{~b}\) are in G. P. then \((1 / \mathrm{a}), 1\), \((1 / \mathrm{b})\) are in (A) G. P. (B) A. P. (C) H. P. (D) A. G. P.
Chapter 8: Problem 670
If \(\mathrm{a}, 4, \mathrm{~b}\) are in \(\mathrm{A} . \mathrm{P}\). and \(\mathrm{a}, 2, \mathrm{~b}\) are in G. P. then \((1 / \mathrm{a}), 1\), \((1 / \mathrm{b})\) are in (A) G. P. (B) A. P. (C) H. P. (D) A. G. P.
All the tools & learning materials you need for study success - in one app.
Get started for free
If a set \(\mathrm{A}=\\{3,7,11, \ldots, 407\\}\) and a set \(\mathrm{B}=\\{2,9,16, \ldots, 709\\}\) then \(\mathrm{n}(\mathrm{A} \cap \mathrm{B})=\) (A) 13 (B) 14 (C) 15 (D) 16
The coefficient of \(x^{8}\) in the product \((x+1)(x+2)(x+3) \ldots\) \((\mathrm{x}+10)\) is (A) 1024 (B) 1300 (C) 1320 (D) 1360
A. \(\mathrm{M}\) of the three numbers which are in G. P. is \([(14) / 3]\) If adding 1 in first and second number and subtracting 1 from the third number, resulting numbers are in \(\mathrm{A} . \mathrm{P}\). then the sum of the squares of original three numbers is (A) 91 (B) 80 (C) 84 (D) 88
If the harmonic mean and geometric mean of two numbers a and \(b\) are 4 and \(3 \sqrt{2}\) respectively then the interval \([a, b]=\) (A) \([3,6]\) (B) \([2,7]\) (C) \([4,5]\) (D) \([1,8]\)
For all \(x, y \in R^{+}\) the value of \(\left[\left\\{\left(1+x+x^{2}\right)\left(1+y+y^{2}\right)\right\\} /(x y)\right]\) \(=\) (A) \(<9\) (B) \(\leq 9\) \((\mathrm{C})>9\) \((\mathrm{D}) \geq 9\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.