Chapter 8: Problem 670
If \(\mathrm{a}, 4, \mathrm{~b}\) are in \(\mathrm{A} . \mathrm{P}\). and \(\mathrm{a}, 2, \mathrm{~b}\) are in G. P. then \((1 / \mathrm{a}), 1\), \((1 / \mathrm{b})\) are in (A) G. P. (B) A. P. (C) H. P. (D) A. G. P.
Chapter 8: Problem 670
If \(\mathrm{a}, 4, \mathrm{~b}\) are in \(\mathrm{A} . \mathrm{P}\). and \(\mathrm{a}, 2, \mathrm{~b}\) are in G. P. then \((1 / \mathrm{a}), 1\), \((1 / \mathrm{b})\) are in (A) G. P. (B) A. P. (C) H. P. (D) A. G. P.
All the tools & learning materials you need for study success - in one app.
Get started for free\(\tan ^{-1}(1 / 3)+\tan ^{-1}(1 / 7)+\tan ^{-1}(1 / 13)+\ldots+\tan ^{-1}[1 /(9703)]\) (A) \(\begin{array}{lll}\text { (B) }(\pi / 6) & \text { (C) }(\pi / 3) & \text { (D) } \tan ^{-1}(0.98)\end{array}\)
If the \(\mathrm{H}\). M. of a and \(\mathrm{c}\) is \(\mathrm{b}\), G. \(\mathrm{M}\). of \(\mathrm{b}\) and \(\mathrm{d}\) is \(\mathrm{c}\) and \(\mathrm{A} . \mathrm{M} .\) of \(c\) and e is \(\mathrm{d}\), then the G. M. of a and e is (A) \(b\) (B) \(c\) (C) \(\mathrm{d}\) (D) ae
If \(\left[\left(a^{n+1}+b^{n+1}\right) /\left(a^{n}+b^{n}\right)\right]\) is \(H .\) M. of \(a\) and \(b\) then \(n=\) \(\left(a, b \in R^{+} \quad a \neq b\right)\) (A) 0 (B) - 1 (C) \(-(1 / 2)\) (D) \(-2\)
If a set \(\mathrm{A}=\\{3,7,11, \ldots, 407\\}\) and a set \(\mathrm{B}=\\{2,9,16, \ldots, 709\\}\) then \(\mathrm{n}(\mathrm{A} \cap \mathrm{B})=\) (A) 13 (B) 14 (C) 15 (D) 16
If A is the A. M. between a and b, then \([(A-2 b) /(A-a)]+[(A-2 a) /(A-b)]=\) (A) \(-8\) (B) 2 (C) 4 (D) \(-4\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.