Chapter 8: Problem 677
If A is the A. M. between a and b, then \([(A-2 b) /(A-a)]+[(A-2 a) /(A-b)]=\) (A) \(-8\) (B) 2 (C) 4 (D) \(-4\)
Chapter 8: Problem 677
If A is the A. M. between a and b, then \([(A-2 b) /(A-a)]+[(A-2 a) /(A-b)]=\) (A) \(-8\) (B) 2 (C) 4 (D) \(-4\)
All the tools & learning materials you need for study success - in one app.
Get started for free
If the harmonic mean and geometric mean of two numbers a and \(b\) are 4 and \(3 \sqrt{2}\) respectively then the interval \([a, b]=\) (A) \([3,6]\) (B) \([2,7]\) (C) \([4,5]\) (D) \([1,8]\)
If for the triangle whose perimeter is \(37 \mathrm{cms}\) and length of sides are in G. P. also the length of the smallest side is \(9 \mathrm{cms}\) then length of remaining two sides are and (A) 12,16 (B) 14,14 (C) 10,18 (D) 15,13
If \((1 / a),(1 / H),(1 / b)\) are in A. P. then \([(H+a) /(H-a)]\) \(+[(\mathrm{H}+\mathrm{b}) /(\mathrm{H}-\mathrm{b})]=\) (A) 2 (B) 4 (C) 0 (D) 1
If \([(b+c-a) / a],[(c+a-b) / b],[(a+b-c) / c]\) are in A. \(P\) then \(\mathrm{a}, \mathrm{b}, \mathrm{c}\) are in (A) G P. (B) A. P. (C) H. P. (D) A. G P.
If \(\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots \mathrm{a}_{10}\) be in A. P., \(\left(1 / \mathrm{h}_{1}\right),\left(1 / \mathrm{h}_{2}\right) \ldots\left[1 / \mathrm{h}_{10}\right)\) be in A. \(P\) and \(a_{1}=h_{1}=2, a_{10}=h_{10}=3\) then \(a_{4} h_{7}=\) (A) \((1 / 6)\) (B) 6 (C) 3 (D) 2
What do you think about this solution?
We value your feedback to improve our textbook solutions.