Chapter 8: Problem 677
If A is the A. M. between a and b, then \([(A-2 b) /(A-a)]+[(A-2 a) /(A-b)]=\) (A) \(-8\) (B) 2 (C) 4 (D) \(-4\)
Chapter 8: Problem 677
If A is the A. M. between a and b, then \([(A-2 b) /(A-a)]+[(A-2 a) /(A-b)]=\) (A) \(-8\) (B) 2 (C) 4 (D) \(-4\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIf \([1 /(\mathrm{b}-\mathrm{c})],[1 /(2 \mathrm{~b}-\mathrm{x})]\) and \([1 /(\mathrm{b}-\mathrm{a})]\) are in A. P., then \(\mathrm{a}-(\mathrm{x} / 2), \mathrm{b}-(\mathrm{x} / 2), \mathrm{c}-(\mathrm{x} / 2)\) are in (A) A. P. (B) G. P. (C) H. P. (D) A. G P.
If \(\mathrm{S}_{1}, \mathrm{~S}_{2}, \mathrm{~S}_{3}, \ldots \mathrm{S}_{\mathrm{n}}\) are the sums of infinite G. P.s. whose first terms are \(1,2,3, \ldots, \mathrm{n}\) and whose common ratios are \((1 / 2)\), \((1 / 3),(1 / 4), \ldots[1 /(\mathrm{n}+1)]\) respectively, then \(^{\mathrm{n}} \sum_{\mathrm{i}=1} \mathrm{~S}_{\mathrm{i}}=\) (A) \([\\{n(n+3)\\} / 2]\) (B) \([\\{n(n+4)\\} / 2]\) (C) \([\\{n(n-3)\\} / 2]\) (D) \([\\{n(n+1)\\} / 2]\)
If the \(\mathrm{H}\). M. of a and \(\mathrm{c}\) is \(\mathrm{b}\), G. \(\mathrm{M}\). of \(\mathrm{b}\) and \(\mathrm{d}\) is \(\mathrm{c}\) and \(\mathrm{A} . \mathrm{M} .\) of \(c\) and e is \(\mathrm{d}\), then the G. M. of a and e is (A) \(b\) (B) \(c\) (C) \(\mathrm{d}\) (D) ae
The sum of the series \(a-(a+d)+(a+2 d)-(a+3 d)+\ldots u p\) to 50 terms is \((\mathrm{A})-50 \mathrm{~d}\) (B) \(25 \mathrm{~d}\) (C) \(a+50 d\) (D) \(-25 \mathrm{~d}\)
\(\tan ^{-1}(1 / 3)+\tan ^{-1}(1 / 7)+\tan ^{-1}(1 / 13)+\ldots+\tan ^{-1}[1 /(9703)]\) (A) \(\begin{array}{lll}\text { (B) }(\pi / 6) & \text { (C) }(\pi / 3) & \text { (D) } \tan ^{-1}(0.98)\end{array}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.