Chapter 8: Problem 679
Sum to infinity of the series \(1+(4 / 5)+\left(7 / 5^{2}\right)+\left(10 / 5^{3}\right)+\ldots\) is (A) \((5 / 16)\) (B) \((35 / 16)\) (C) \((16 / 35)\) (D) \((7 / 16)\)
Chapter 8: Problem 679
Sum to infinity of the series \(1+(4 / 5)+\left(7 / 5^{2}\right)+\left(10 / 5^{3}\right)+\ldots\) is (A) \((5 / 16)\) (B) \((35 / 16)\) (C) \((16 / 35)\) (D) \((7 / 16)\)
All the tools & learning materials you need for study success - in one app.
Get started for freeThe coefficient of \(x^{8}\) in the product \((x+1)(x+2)(x+3) \ldots\) \((\mathrm{x}+10)\) is (A) 1024 (B) 1300 (C) 1320 (D) 1360
If the pth term of a G. P. is \(x\) and \(q\) th term is \(y\), then the nth term is (A) \(\left[x^{\overline{n-p} / y^{n}-q}\right]^{[1 /(p-q)]}\) (B) \(\left[x^{n+q} / y^{n+p}\right]^{[1 /(p-q)]}\) (C) \(\left[x^{n-q} / y^{n-p}\right]^{[1 /(p-q)]}\) (D) \(\left[x^{n-q} / y^{n-p}\right]^{[1 /(p+q)]}\)
If \([(b+c-a) / a],[(c+a-b) / b],[(a+b-c) / c]\) are in A. \(P\) then \(\mathrm{a}, \mathrm{b}, \mathrm{c}\) are in (A) G P. (B) A. P. (C) H. P. (D) A. G P.
Find \(\mathrm{a}, \mathrm{b}\) and \(\mathrm{c}\) between 2 and 18 such that \(\mathrm{a}+\mathrm{b}+\mathrm{c}=25\), \(2, a, b\) are in A. P. and \(b, c, 18\) are in G. P. (A) \(5,8,12\) (B) \(4,8,13\) (C) \(3,9,13\) (D) \(5,9,11\)
If \((1 / a),(1 / H),(1 / b)\) are in A. P. then \([(H+a) /(H-a)]\) \(+[(\mathrm{H}+\mathrm{b}) /(\mathrm{H}-\mathrm{b})]=\) (A) 2 (B) 4 (C) 0 (D) 1
What do you think about this solution?
We value your feedback to improve our textbook solutions.