Chapter 8: Problem 679
Sum to infinity of the series \(1+(4 / 5)+\left(7 / 5^{2}\right)+\left(10 / 5^{3}\right)+\ldots\) is (A) \((5 / 16)\) (B) \((35 / 16)\) (C) \((16 / 35)\) (D) \((7 / 16)\)
Chapter 8: Problem 679
Sum to infinity of the series \(1+(4 / 5)+\left(7 / 5^{2}\right)+\left(10 / 5^{3}\right)+\ldots\) is (A) \((5 / 16)\) (B) \((35 / 16)\) (C) \((16 / 35)\) (D) \((7 / 16)\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIf the A. M. of two numbers a and \(b\) is equal to \(\sqrt{(10) \text { times }}\) their G. M. then \([(a-b) /(a+b)]=\) (A) \([\sqrt{(10) / 3]}\) (B) \(3 \sqrt{(10)}\) (C) \([9 /(10)]\) (D) \([3 / \sqrt{(10)}]\)
The sum of the numbers \(1+2.2+3.2^{2}+4.2^{3}+\ldots+50.2^{49}\) is (A) \(1+49.2^{49}\) (B) \(1+49.2^{50}\) (C) \(1+50.2^{49}\) (D) \(1+50.2^{50}\)
If \(\mathrm{a}, \mathrm{b}, \mathrm{c}\) are in \(\mathrm{A} . \mathrm{P}\). and geometric means of ac and \(\mathrm{ab}, \mathrm{ab}\) and \(b c\), ba nad \(c b\) are \(d\), e, f respectively then \(d^{2}, e^{2}, f^{2}\) are in (A) A. P. (B) G. P. (C) H. P. (D) A. G P.
In a \(\triangle \mathrm{ABC}\) angles \(\mathrm{A}, \mathrm{B}, \mathrm{C}\) are in increasing A. P. and \(\sin (B+2 C)=[(-1) / 2]\) then \(A=\) (A) \((3 \pi / 4)\) (B) \((\pi / 4)\) (C) \((5 \pi / 6)\) (D) \((\pi / 6)\)
\([1 /(2 \times 5)]+[1 /(5 \times 8)]+[1 /(8 \times 11)]+\ldots 100\) terms (A) \([(25) /(160)]\) (B) \((1 / 6)\) (C) \([(25) /(151)]\) (D) \([(25) /(152)]\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.