Chapter 8: Problem 685
In a \(\triangle \mathrm{ABC}\) angles \(\mathrm{A}, \mathrm{B}, \mathrm{C}\) are in increasing A. P. and \(\sin (B+2 C)=[(-1) / 2]\) then \(A=\) (A) \((3 \pi / 4)\) (B) \((\pi / 4)\) (C) \((5 \pi / 6)\) (D) \((\pi / 6)\)
Chapter 8: Problem 685
In a \(\triangle \mathrm{ABC}\) angles \(\mathrm{A}, \mathrm{B}, \mathrm{C}\) are in increasing A. P. and \(\sin (B+2 C)=[(-1) / 2]\) then \(A=\) (A) \((3 \pi / 4)\) (B) \((\pi / 4)\) (C) \((5 \pi / 6)\) (D) \((\pi / 6)\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIf \(\log _{3} 2, \log _{3}\left(2^{x}-5\right)\) and \(\log _{3}\left[2^{x}-(7 / 2)\right]\) are in A. P. then \(\mathrm{x}=\) (A) 2 (B) 3 (C) 4 (D) 2 or 3
The greatest value of \(n\) for which \(1+(1 / 2)+\left(1 / 2^{2}\right)+\ldots\) \(+\left(1 / 2^{\mathrm{n}}\right)<2\) is \((\mathrm{n} \in \mathrm{N})\) (A) 100 (B) 10 (C) 1000 (D) none of these
If \((1 / a),(1 / b),(1 / c)\) are in A. P., then \([(1 / a)+(1 / b)-(1 / c)]\) \([(1 / b)+(1 / c)-(1 / a)]=\) (A) \(\left[\left(4 b^{2}-3 a c\right) /(a b c)\right]\) (B) \((4 / \mathrm{ac})-\left(3 / \mathrm{b}^{2}\right)\) (C) \((4 / \mathrm{ac})-\left(5 / \mathrm{b}^{2}\right)\) (D) \(\left[\left(4 b^{2}+3 a c\right) /\left(a b^{2} c\right)\right]\)
\([1 /(2 \times 5)]+[1 /(5 \times 8)]+[1 /(8 \times 11)]+\ldots 100\) terms (A) \([(25) /(160)]\) (B) \((1 / 6)\) (C) \([(25) /(151)]\) (D) \([(25) /(152)]\)
If \((1 / a),(1 / H),(1 / b)\) are in A. P. then \([(H+a) /(H-a)]\) \(+[(\mathrm{H}+\mathrm{b}) /(\mathrm{H}-\mathrm{b})]=\) (A) 2 (B) 4 (C) 0 (D) 1
What do you think about this solution?
We value your feedback to improve our textbook solutions.