Chapter 8: Problem 685
In a \(\triangle \mathrm{ABC}\) angles \(\mathrm{A}, \mathrm{B}, \mathrm{C}\) are in increasing A. P. and \(\sin (B+2 C)=[(-1) / 2]\) then \(A=\) (A) \((3 \pi / 4)\) (B) \((\pi / 4)\) (C) \((5 \pi / 6)\) (D) \((\pi / 6)\)
Chapter 8: Problem 685
In a \(\triangle \mathrm{ABC}\) angles \(\mathrm{A}, \mathrm{B}, \mathrm{C}\) are in increasing A. P. and \(\sin (B+2 C)=[(-1) / 2]\) then \(A=\) (A) \((3 \pi / 4)\) (B) \((\pi / 4)\) (C) \((5 \pi / 6)\) (D) \((\pi / 6)\)
All the tools & learning materials you need for study success - in one app.
Get started for free\(\left(3 / 1^{2}\right)+\left[5 /\left(1^{2}+2^{2}\right)\right]+\left[7 /\left(1^{2}+2^{2}+3^{2}\right)\right] \ldots\) upto n terms \(-\) (A) \(\left[\left(6 \mathrm{n}^{2}\right) /(\mathrm{n}+1)\right]\) (B) \([(6 n) /(\mathrm{n}+1)]\) (C) \([\\{6(2 \mathrm{n}-1)\\} /(\mathrm{n}+1)]\) (D) \(\left[\left\\{3\left(n^{2}+1\right)\right\\} /(n+1)\right]\)
In a G. P., the last term is 1024 and the common ratio is \(2 .\) Its 20 th term from the end is (A) \([1 /(512)]\) (B) \([1 /(1024)]\) (C) \([1 /(256)]\) (D) 512
If \((1 / a),(1 / b),(1 / c)\) are in A. P., then \([(1 / a)+(1 / b)-(1 / c)]\) \([(1 / b)+(1 / c)-(1 / a)]=\) (A) \(\left[\left(4 b^{2}-3 a c\right) /(a b c)\right]\) (B) \((4 / \mathrm{ac})-\left(3 / \mathrm{b}^{2}\right)\) (C) \((4 / \mathrm{ac})-\left(5 / \mathrm{b}^{2}\right)\) (D) \(\left[\left(4 b^{2}+3 a c\right) /\left(a b^{2} c\right)\right]\)
If \(\left\\{a_{n}\right\\}\) is an A. P. then \(a_{1}^{2}-a_{2}^{2}+a_{3}^{2}-a_{4}^{2}+\ldots+a_{99}^{2}-a_{100}^{2}\) (A) \((50 / 99)\left(\mathrm{a}_{1}^{2}-\mathrm{a}_{100}^{2}\right)\) (B) \([(1000) /(99)]\left(\mathrm{a}_{100}^{2}-\mathrm{a}_{1}^{2}\right)\) (C) \((50 / 51)\left(\mathrm{a}_{1}^{2}+\mathrm{a}_{100}^{2}\right)\) (D) None of this
If \(\log _{3} 2, \log _{3}\left(2^{x}-5\right)\) and \(\log _{3}\left[2^{x}-(7 / 2)\right]\) are in A. P. then \(\mathrm{x}=\) (A) 2 (B) 3 (C) 4 (D) 2 or 3
What do you think about this solution?
We value your feedback to improve our textbook solutions.