Chapter 9: Problem 690
\(\lim _{\mathrm{x} \rightarrow 2}\left[\left(4-8 \mathrm{x}+5 \mathrm{x}^{2}-\mathrm{x}^{3}\right) /\left(2 \mathrm{x}^{3}-9 \mathrm{x}^{2}+12 \mathrm{x}-4\right)\right]=?\) (a) \((1 / 3)\) (b) \(-(1 / 3)\) (c) 3 (d) \(-3\)
Chapter 9: Problem 690
\(\lim _{\mathrm{x} \rightarrow 2}\left[\left(4-8 \mathrm{x}+5 \mathrm{x}^{2}-\mathrm{x}^{3}\right) /\left(2 \mathrm{x}^{3}-9 \mathrm{x}^{2}+12 \mathrm{x}-4\right)\right]=?\) (a) \((1 / 3)\) (b) \(-(1 / 3)\) (c) 3 (d) \(-3\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIf \(\mathrm{f}(\mathrm{x})=\left[\left(\mathrm{e}^{(1 / \mathrm{x})}-\mathrm{e}^{-(1 / \mathrm{x})}\right) /\left(\mathrm{e}^{(1 / \mathrm{x})}+\mathrm{e}^{-(1 / \mathrm{x})}\right)\right], \mathrm{x} \neq 0\) and \(\lim _{\mathrm{x} \rightarrow(0+)+} \mathrm{f}(\mathrm{x})=\mathrm{a}, \lim _{\mathrm{x} \rightarrow(0)-} \mathrm{f}(\mathrm{x})=\mathrm{b}\) then the value of \(\mathrm{a}\) and \(\mathrm{b}\) are: (a) \(\mathrm{a}=1, \mathrm{~b}=-1\) (b) \(a=0, b=1\) (c) \(a=-1, b=1\) (d) \(\mathrm{a}=1, \mathrm{~b}=0\)
\(\lim _{\mathrm{x} \rightarrow 1}[\sqrt{\\{1-\operatorname{Cos} 2(\mathrm{x}-1)\\} /(\mathrm{x}-1)}]=?\) (a) \(\sqrt{2}\) (b) 1 (c) Limit does not exist (d) \(-\sqrt{2}\)
\(\lim _{\mathrm{x} \rightarrow 0}\left[(\sin 2 \mathrm{x}-\tan 2 \mathrm{x}) / \mathrm{x}^{3}\right]=?\) (a) 4 (b) \(-8\) (c) \(-4\) (d) 8
If \((\mathrm{a} / 2)\) and \((\mathrm{b} / 2)\) be two distinct real roots of \(\ell \mathrm{x}^{2}+\mathrm{mx}+\mathrm{n}=0\) then \(\lim _{\mathrm{x} \rightarrow(\mathrm{a} / 2)}\left[\left\\{1-\operatorname{Cos}\left(\ell \mathrm{x}^{2}+\mathrm{mx}+\mathrm{n}\right)\right\\} /(2 \mathrm{x}-\mathrm{a})^{2}\right]=?\) (Where \(\ell=0, \mathrm{a}, \mathrm{b} \in \mathrm{R})\) (a) \(\left[\ell^{2} /\left\\{8(\mathrm{a}-\mathrm{b})^{2}\right\\}\right]\) (b) \(\left(\ell^{2} / 32\right)\left(a^{2}-b^{2}\right)\) (c) \(\left(\ell^{2} / 32\right)(\mathrm{a}-\mathrm{b})^{2}\) (d) \(\left(\ell^{2} / 16\right)\left(a^{2}-b^{2}\right)\)
The value \(\mathrm{p}\) for which the function \(\mathrm{f}(\mathrm{x})=\left[\left(4^{\mathrm{x}}-1\right)^{3} /\left\\{\operatorname{Sin}(\mathrm{x} / \mathrm{p}) \log \left[1+\left(\mathrm{x}^{2} / 3\right)\right]\right\\}\right], \mathrm{x} \neq 0\) \(\mathrm{f}(\mathrm{x})=12(\log 4)^{3}, \mathrm{x}=0\) may be continuous at \(\mathrm{x}=0\) is : (a) 1 (b) 2 (c) 3 (d) 4
What do you think about this solution?
We value your feedback to improve our textbook solutions.