Chapter 9: Problem 696
\(\lim _{\mathrm{X} \rightarrow 1}\left\\{10\left(1-\mathrm{x}^{10}\right)^{-1}-9\left(1-\mathrm{x}^{9}\right)^{-1}\right\\}=?\) (a) \(0.5\) (b) \(0.05\) (c) 45 (d) \(-45\)
Chapter 9: Problem 696
\(\lim _{\mathrm{X} \rightarrow 1}\left\\{10\left(1-\mathrm{x}^{10}\right)^{-1}-9\left(1-\mathrm{x}^{9}\right)^{-1}\right\\}=?\) (a) \(0.5\) (b) \(0.05\) (c) 45 (d) \(-45\)
All the tools & learning materials you need for study success - in one app.
Get started for free\(\lim _{\mathrm{x} \rightarrow(\pi / 3)}[\\{1-\sqrt{(3) \cot x}\\} /(2 \cos x-1)]=?\) (a) \((4 / 3)\) (b) \(-(4 / 3)\) (c) \((2 / 3)\) (d) \(-(2 / 3)\)
\(\lim _{\mathrm{x} \rightarrow \infty}\left[\left\\{{ }^{100} \sum_{\mathrm{i}=1}(\mathrm{x}+\mathrm{i})^{\mathrm{n}}\right\\} /\left(\mathrm{x}^{\mathrm{n}}+10^{\mathrm{n}}\right)\right]=?(\mathrm{n} \in \mathrm{N}-\\{1\\})\) (a) \(n\) (b) 100 (c) \(100 \mathrm{n}\) (d) \(10 \mathrm{n}\)
The value of \(\mathrm{k}(\mathrm{k}>0)\) for which the function \(\mathrm{f}(\mathrm{x})=\left[\left(\mathrm{e}^{\mathrm{x}}-1\right)^{4} /\left\\{\operatorname{Sin}\left(\mathrm{x}^{2} / \mathrm{k}^{2}\right) \log \left[1+\left(\mathrm{x}^{2} / 2\right)\right]\right\\}\right]\) \(\mathrm{x} \neq 0, \mathrm{f}(0)=8\) may be continuous at \(\mathrm{x}=0\) is: (a) 1 (b) 2 (c) 4 (d) 3
\(\lim _{\mathrm{x} \rightarrow(0)+}\left[\left(\tan \mathrm{x}+\tan ^{2} \mathrm{x}+\tan ^{3} \mathrm{x}+\tan ^{4} \mathrm{x}+\ldots \ldots \infty\right) / \pi \mathrm{x}\right]\) [where \(0<|\mathrm{x}|<(\pi / 4)]\) (a) \((1 / \pi)\) (b) \(\left(1 / \pi^{\mathrm{n}}\right)\) (c) \(\pi\) (d) 0
The value of \(\lim _{\mathrm{x} \rightarrow(\pi / 4)}\left[\left\\{(\tan \mathrm{x})^{\tan \mathrm{x}}-\tan \mathrm{x}\right\\} /\\{\ln (\tan \mathrm{x})-\tan \mathrm{x}+1\\}\right]\) is (a) 0 (b) 1 (c) \(-2\) (d) none of these
What do you think about this solution?
We value your feedback to improve our textbook solutions.