\(\lim _{\mathrm{y} \rightarrow(0)+}\left[\left({ }^{3} \sqrt{\mathrm{y}}+{ }^{3} \sqrt{\mathrm{y}}^{2}-{ }^{4} \sqrt{\mathrm{y}}^{3}\right) /\left({ }^{3} \sqrt{\mathrm{y}}+\sqrt{\mathrm{y}}+{ }^{4} \sqrt{\mathrm{y}}^{3}\right)\right]\) (a) \(-1\) (b) Limit does not exist (c) 1 (d) 0

Short Answer

Expert verified
The short answer is: (b) Limit does not exist.

Step by step solution

01

Analyze the given function

The given function is \[ \lim _{y \rightarrow(0)+}\left[\frac{{ }^{3}\sqrt{y}+{ }^{3}\sqrt{y^{2}}-{ }^{4}\sqrt{y^{3}}}{{ }^{3}\sqrt{y}+\sqrt{y}+{ }^{4}\sqrt{y^{3}}}\right] \]
02

Simplify the expressions inside the limit function

Simplify the expressions inside the limit function as follows: \[ { }^{3}\sqrt{y^{2}} = { }^{3}\sqrt{(y^{\frac{1}{3}})^{2}} = (y^{\frac{1}{3}})^{2} \text{ and } { }^{4}\sqrt{y^{3}} = { }^{4}\sqrt{(y^{\frac{1}{4}})^{3}} = (y^{\frac{1}{4}})^{3} \] Now, we have: \[ \lim _{y \rightarrow(0)+}\left[\frac{{ }^{3}\sqrt{y}+(y^{\frac{1}{3}})^{2}-(y^{\frac{1}{4}})^{3}}{{ }^{3}\sqrt{y}+\sqrt{y}+(y^{\frac{1}{4}})^{3}}\right] \]
03

Factor the numerator and denominator

Factor the numerator and denominator by factoring out the common terms y^{\frac{1}{3}} and y^{\frac{1}{4}} respectively: \[ \lim _{y \rightarrow(0)+}\left[\frac{y^{\frac{1}{3}}(1+y^{\frac{1}{3}}-y^{\frac{1}{2}})}{y^{\frac{1}{4}}({ }^{3}\sqrt{y}+\sqrt{y}+(y^{\frac{1}{4}})^{2})}\right] \]
04

Simplify the limit function by canceling out the common factors

We can cancel out the common factors y^{\frac{1}{3}} and y^{\frac{1}{4}} from the numerator and denominator: \[ \lim _{y \rightarrow(0)+}\left[\frac{1+y^{\frac{1}{3}}-y^{\frac{1}{2}}}{(y^{\frac{1}{4}})({ }^{3}\sqrt{y}+\sqrt{y}+(y^{\frac{1}{4}})^{2})}\right] \]
05

Substitute the limit into the simplified function and find the limit

Now, substitute the limit (y approaching 0) into the simplified function: \[ \lim _{y \rightarrow(0)+}\left[\frac{1+0^{\frac{1}{3}}-0^{\frac{1}{2}}}{(0^{\frac{1}{4}})(0^{\frac{1}{3}}+0+0^{\frac{1}{2}})}\right] \] Evaluating the expression, we have: \[ \frac{1+0-0}{(0)(0+0+0)} \] Since we have a 0 in the denominator, the limit does not exist. So, the answer is (b) Limit does not exist.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free