Chapter 9: Problem 727
\(\lim _{\mathrm{X} \rightarrow 0}(\pi)^{(\mathrm{e}) \mathrm{x}}(\mathrm{e})^{(-\pi) \mathrm{x}}=?\) (a) \((\mathrm{e} / \pi)\) (b) \((\pi / \mathrm{e})\) (c) 1 (d) Limit does not exist
Chapter 9: Problem 727
\(\lim _{\mathrm{X} \rightarrow 0}(\pi)^{(\mathrm{e}) \mathrm{x}}(\mathrm{e})^{(-\pi) \mathrm{x}}=?\) (a) \((\mathrm{e} / \pi)\) (b) \((\pi / \mathrm{e})\) (c) 1 (d) Limit does not exist
All the tools & learning materials you need for study success - in one app.
Get started for free\(\lim _{\mathrm{x} \rightarrow 0}\left[\left\\{\tan ^{108}(107 \mathrm{x})\right\\} /\left\\{\log \left(1+\mathrm{x}^{108}\right)\right\\}\right]=?\) (a) \((107 / 108)\) (b) \((107)^{108}\) (c) \((107)^{-108}\) (d) \(-(107 / 108)\)
\(\lim _{\mathrm{x} \rightarrow(\pi / 3)}[\\{\sin [(\pi / 3)-\mathrm{x}]\\} /(2 \cos \mathrm{x}-1)]\) is equal to (a) \(\sqrt{3}\) (b) \((1 / 2)\) (c) \((1 / \sqrt{3})\) (d) \((2 / \sqrt{3})\)
If \(=\mid \begin{array}{ll}\mathrm{x}+\mathrm{a} \sqrt{2} \operatorname{Sin} \mathrm{x}, & 0 \leq \mathrm{x} \leq(\pi / 4) \\ 2 \mathrm{x} \operatorname{Cot} \mathrm{x}+\mathrm{b}, & {[(\pi / 4)<\mathrm{x} \leq(\pi / 2)]} \\ \mathrm{a} \operatorname{Cos} 2 \mathrm{x}+\mathrm{b} \operatorname{Sin} \mathrm{x}, & (\pi / 2)<\mathrm{x} \leq \pi\end{array}\) is continuous on \([0, \pi]\), then \(\mathrm{a}=\ldots \ldots\) and \(\mathrm{b}=\ldots \ldots .\) (a) \(\mathrm{a}=(5 \pi / 2), \mathrm{b}=(5 \pi / 4)\) (b) \(\mathrm{a}=-(5 \pi / 2), \mathrm{b}=-(5 \pi / 4)\) (c) \(\mathrm{a}=(\pi / 6), \mathrm{b}=[(-\pi) / 12]\) (d) \(\mathrm{a}=-(5 \pi / 4), \mathrm{b}=(5 \pi / 2)\)
If \(\lim _{\mathrm{x} \rightarrow 0}[\\{\operatorname{Sin}[(\mathrm{n}+1) \mathrm{x}]+\sin \mathrm{x}\\} / \mathrm{x}]=(1 / 2)\) then value of n is: (a) \(-2.5\) (b) \(-0.5\) (c) \(-1.5\) (d) \(-1\)
If \(f(x)=\mid \begin{array}{ll}{\left[\left(e^{a x}-e^{x}-x\right) / x^{2}\right] ;} & x \neq 0 \\ (3 / 2) ; & x=0\end{array}\) is continuous function then the value of a is: (a) 1 (b) \(-1\) (c) 4 (d) 2
What do you think about this solution?
We value your feedback to improve our textbook solutions.