Chapter 9: Problem 734
\(\lim _{(1 / \mathrm{x}) \rightarrow 0}\left[\left\\{(2+3 \mathrm{x})^{40}(4+3 \mathrm{x})^{5}\right\\} /(2-3 \mathrm{x})^{45}\right]=?\) (a) \((40 / 9)\) (b) \(-35\) (c) \(-1\) (d) \((8 / 9)\)
Chapter 9: Problem 734
\(\lim _{(1 / \mathrm{x}) \rightarrow 0}\left[\left\\{(2+3 \mathrm{x})^{40}(4+3 \mathrm{x})^{5}\right\\} /(2-3 \mathrm{x})^{45}\right]=?\) (a) \((40 / 9)\) (b) \(-35\) (c) \(-1\) (d) \((8 / 9)\)
All the tools & learning materials you need for study success - in one app.
Get started for free\(\lim _{\mathrm{x} \rightarrow-8}\left[\left({ }^{3} \sqrt{\mathrm{x}}+2\right) /\\{\sqrt{(1-\mathrm{x})-3\\}]}=?\right.\) (a) \((1 / 8)\) (b) \(-(1 / 2) \quad\) (c) \(+(1 / 4)\) (d) \(-(1 / 8)\)
\(\lim _{\mathrm{x} \rightarrow(\pi / 2)}[\\{\sin (\cos \mathrm{x}) \cos \mathrm{x}\\} /\\{\sin \mathrm{x}-\operatorname{cosec} \mathrm{x}\\}]=?\) (a) 0 (b) 1 (c) Limit does not exist (d) \(-1\)
\(\lim _{\mathrm{x} \rightarrow \infty}\left[\left(\mathrm{x}^{2}+5 \mathrm{x}+3\right) /\left(\mathrm{x}^{2}+\mathrm{x}+2\right)\right]^{\mathrm{x}}=?\) (a) \(\mathrm{e}^{-4}\) (b) \(\mathrm{e}^{2}\) (c) \(\mathrm{e}^{4}\) (d) \(\mathrm{e}^{-2}\)
Let \(\mathrm{f}\) be a non zero continuous function satisfying \(\mathrm{f}(\mathrm{x}+\mathrm{y})=\mathrm{f}(\mathrm{x}) \mathrm{f}(\mathrm{y}), \forall \mathrm{x}, \mathrm{y} \in \mathrm{R}\), If \(\mathrm{f}(\mathrm{z})=9\) then \(\mathrm{f}(3)=?\) (a) 1 (b) 27 (c) 9 (d) 6
\(\mathrm{f}(\mathrm{x})=\mid \begin{array}{ll}\left(3 / \mathrm{x}^{2}\right) \sin 2 \mathrm{x}^{2}, & \mathrm{x}<0 \\ {\left[\left(\mathrm{x}^{2}+2 \mathrm{x}+\mathrm{c}\right) /\left(1-3 \mathrm{x}^{2}\right)\right],} & \mathrm{x} \in[0, \infty)-\\{1 / \sqrt{3}\\} \\ 0, & \mathrm{x}=(1 / \sqrt{3})\end{array}\) then in order that \(\mathrm{f}\) to be is continuous at \(\mathrm{x}=0\), value of \(\mathrm{c}\) is: (a) 2 (b) 4 (c) 6 (d) 8
What do you think about this solution?
We value your feedback to improve our textbook solutions.