The value of \(\mathrm{m}\) and \(\mathrm{n}\) for which the function
\(f(x)=\mid \begin{array}{ll}{[\\{\operatorname{Sin}(m+1) x+\sin x\\} / x],} &
x<0 \\ n, & x=0 \\ {\left[\left\\{\sqrt{\left.
\left.\left(x+x^{2}\right)-\sqrt{x}\right\\} /\left(x^{(3 /
2)}\right)\right],}\right.\right.} & x>0\end{array}\)
is continuous for \(\forall x \in R\) ?
(a) \(\mathrm{m}=-(3 / 2), \mathrm{n}=(1 / 2)\)
(b) \(\mathrm{m}=(1 / 2), \mathrm{n}=(3 / 2)\)
(c) \(\mathrm{m}=(1 / 2), \mathrm{n}=-(3 / 2)\)
(d) \(\mathrm{m}=(5 / 2), \mathrm{n}=(1 / 2)\)