Chapter 9: Problem 746
\(\left.\lim _{\mathrm{X} \rightarrow 2}\left[\left(2^{\mathrm{x}}+2^{3-\mathrm{x}}-6\right) /\left\\{\sqrt{(} 2^{-\mathrm{x}}\right)-2^{1-\mathrm{x}}\right\\}\right]=?\) (a) \(-12\) (b) 8 (c) \(-8\) (d) 6
Chapter 9: Problem 746
\(\left.\lim _{\mathrm{X} \rightarrow 2}\left[\left(2^{\mathrm{x}}+2^{3-\mathrm{x}}-6\right) /\left\\{\sqrt{(} 2^{-\mathrm{x}}\right)-2^{1-\mathrm{x}}\right\\}\right]=?\) (a) \(-12\) (b) 8 (c) \(-8\) (d) 6
All the tools & learning materials you need for study success - in one app.
Get started for freeIf \(\mathrm{k}^{\text {th }}\) term \(\mathrm{t}_{\mathrm{k}}\), of the series is formulated as \(\mathrm{t}_{\mathrm{k}}=\left[\mathrm{k} /\left(1+\mathrm{k}^{2}+\mathrm{k}^{4}\right)\right]\) then \(\lim _{\mathrm{n} \rightarrow \infty}^{\mathrm{n}} \sum_{\mathrm{k}=1} \mathrm{t}_{\mathrm{k}}=\ldots \ldots\) is: (a) \(0.25\) (b) \(0.50\) (c) 1 (d) Limit of the series does not exists
\(\lim _{\mathrm{x} \rightarrow \infty}\left[\left(\mathrm{x}^{2}+7 \mathrm{x}+2013\right) / \mathrm{x}^{2}\right]^{7 \mathrm{x}}=?\) (a) \(\mathrm{e}^{7}\) (b) \(\mathrm{e}^{14}\) (c) \(\mathrm{e}^{21}\) (d) \(\mathrm{e}^{49}\)
If \(\mathrm{f}(\mathrm{x})=\mid \begin{array}{ll}(\operatorname{Sin} 2 \mathrm{x})^{(\tan ) 2(2 \mathrm{x}) ;} ; & \mathrm{x} \neq(\pi / 4) \\\ \mathrm{K} ; & \mathrm{x}=(\pi / 4)\end{array}\) is continuous \(\mathrm{x} \neq(\pi / 4)\) then the value of \(\mathrm{K}\) is: (a) \(\mathrm{e}^{(1 / 2)}\) (b) \(\mathrm{e}^{-(1 / 2)}\) (c) \(\mathrm{e}^{2}\) (d) \(\mathrm{e}^{-2}\)
\(\lim _{\mathrm{x} \rightarrow-(\pi / 4)}[\\{\sin \mathrm{x} \cdot \cos (5 \pi / 4)-\cos (7 \pi / 4) \cos \mathrm{x}\\} /(\pi+4 \mathrm{x})]\) \(=\) ? \(\begin{array}{lll}\text { (a) }-(1 / 3) & \text { (b) }(35 / 4) & \text { (c) }-(1 / 4)\end{array}\) (d) \(-(1 / 35)\)
\(\lim _{\mathrm{x} \rightarrow 0}\left[\left\\{\sqrt{\left.\left. \left.\left(5+\mathrm{x}^{5}\right)-\sqrt{(5-\mathrm{x}}^{5}\right)\right\\} / \mathrm{x}^{5}\right]}=?\right.\right.\) (a) 5 (b) 25 (c) \((\sqrt{5})^{-1}\) (d) \(4 \sqrt{5}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.