Chapter 9: Problem 752
\(\lim _{\mathrm{x} \rightarrow \pi}\left[\left\\{\sqrt{\left.(17+\operatorname{Cos} \mathrm{x})-4\\} /(\pi-\mathrm{x})^{2}\right]}=?\right.\right.\) (a) \((1 / 8)\) (b) \((1 / 16)\) (c) \((1 / 24)\) (d) \((1 / 64)\)
Chapter 9: Problem 752
\(\lim _{\mathrm{x} \rightarrow \pi}\left[\left\\{\sqrt{\left.(17+\operatorname{Cos} \mathrm{x})-4\\} /(\pi-\mathrm{x})^{2}\right]}=?\right.\right.\) (a) \((1 / 8)\) (b) \((1 / 16)\) (c) \((1 / 24)\) (d) \((1 / 64)\)
All the tools & learning materials you need for study success - in one app.
Get started for free\(\lim _{\mathrm{x} \rightarrow 0}\left[\left\\{1 /\left[{ }^{3} \sqrt{\left.\left. \left.\left(8 \mathrm{~h}^{3}+\mathrm{h}^{4}\right)\right]\right\\}-(1 / 2 \mathrm{~h})\right]}=?\right.\right.\right.\) (a) \((1 / 2)\) (b) \((1 / 68) \quad\) (c) \(-(1 / 12) \quad\) (d) \(-(1 / 48)\)
\(\lim _{\mathrm{y} \rightarrow(0)+}\left[\left({ }^{3} \sqrt{\mathrm{y}}+{ }^{3} \sqrt{\mathrm{y}}^{2}-{ }^{4} \sqrt{\mathrm{y}}^{3}\right) /\left({ }^{3} \sqrt{\mathrm{y}}+\sqrt{\mathrm{y}}+{ }^{4} \sqrt{\mathrm{y}}^{3}\right)\right]\) (a) \(-1\) (b) Limit does not exist (c) 1 (d) 0
If \(\mathrm{f}(\mathrm{x})=\mid \begin{array}{ll}|\mathrm{x}| \operatorname{Cos}(1 / \mathrm{x})+9 \mathrm{x}^{2} ; & \mathrm{x} \neq 0 \\\ \mathrm{~K} ; & \mathrm{x}=0\end{array}\) is continuous at \(\mathrm{x}=0\) then the value of \(\mathrm{K}\) (a) 9 (b) 6 (c) 0 (d) \(-9\)
\(\left.\lim _{\mathrm{x} \rightarrow \pi}[\\{25-\sqrt{(} 626+\operatorname{Cos} \mathrm{x})\\} /(\pi-\mathrm{x})^{2}\right]=?\) (a) \(0.1\) (b) \(-0.02\) (c) \(-0.01\) (d) \(-0.1\)
The value of \(\lim _{\mathrm{x} \rightarrow(\pi / 4)}\left[\left\\{(\tan \mathrm{x})^{\tan \mathrm{x}}-\tan \mathrm{x}\right\\} /\\{\ln (\tan \mathrm{x})-\tan \mathrm{x}+1\\}\right]\) is (a) 0 (b) 1 (c) \(-2\) (d) none of these
What do you think about this solution?
We value your feedback to improve our textbook solutions.