Chapter 9: Problem 753
\(\lim _{\mathrm{x} \rightarrow 1}\left[\left\\{\left[{ }^{3} \sum_{\mathrm{i}=1}(\mathrm{x}+\mathrm{i})^{2}\right]-29\right\\} /(\mathrm{x}-1)\right]=?\) (a) 9 (b) 12 (c) 18 (d) 30
Chapter 9: Problem 753
\(\lim _{\mathrm{x} \rightarrow 1}\left[\left\\{\left[{ }^{3} \sum_{\mathrm{i}=1}(\mathrm{x}+\mathrm{i})^{2}\right]-29\right\\} /(\mathrm{x}-1)\right]=?\) (a) 9 (b) 12 (c) 18 (d) 30
All the tools & learning materials you need for study success - in one app.
Get started for free\(\lim _{\mathrm{X} \rightarrow 1}\left\\{10\left(1-\mathrm{x}^{10}\right)^{-1}-9\left(1-\mathrm{x}^{9}\right)^{-1}\right\\}=?\) (a) \(0.5\) (b) \(0.05\) (c) 45 (d) \(-45\)
For the function $$ \mathrm{f}(\mathrm{x})=\mid \begin{aligned} &{\left[\left(2^{-\mathrm{m}}-\mathrm{x}^{\mathrm{m}}\right) /\left(\mathrm{x}^{-\mathrm{m}}-2^{\mathrm{m}}\right)\right]: \mathrm{x} \neq 0.5} \\ &+0.0625 \end{aligned} $$ If \(\mathrm{f}\) is continuous at \(\mathrm{x}=0.5\) then the value of \(\mathrm{m}=\ldots \ldots\) (a) \(0.5\) (b) 2 (c) \(-2\) (d) \(-0.5\)
The value of \(\lim _{\mathrm{x} \rightarrow(\pi / 4)}\left[\left\\{(\tan \mathrm{x})^{\tan \mathrm{x}}-\tan \mathrm{x}\right\\} /\\{\ln (\tan \mathrm{x})-\tan \mathrm{x}+1\\}\right]\) is (a) 0 (b) 1 (c) \(-2\) (d) none of these
\(\lim _{\mathrm{x} \rightarrow[(-\pi) / 4]}[(\operatorname{Sin} 3 \mathrm{x}-\operatorname{Cos} 3 \mathrm{x}) /(4 \mathrm{x}+\pi)]=?\) (a) \(-[3 /(2 \sqrt{2})]\) (b) \([3 /(2 \sqrt{3})]\) (c) \(-[3 /(2 \sqrt{3})]\) (d) \(+[3 /(2 \sqrt{2})]\)
The value \(\mathrm{p}\) for which the function \(\mathrm{f}(\mathrm{x})=\left[\left(4^{\mathrm{x}}-1\right)^{3} /\left\\{\operatorname{Sin}(\mathrm{x} / \mathrm{p}) \log \left[1+\left(\mathrm{x}^{2} / 3\right)\right]\right\\}\right], \mathrm{x} \neq 0\) \(\mathrm{f}(\mathrm{x})=12(\log 4)^{3}, \mathrm{x}=0\) may be continuous at \(\mathrm{x}=0\) is : (a) 1 (b) 2 (c) 3 (d) 4
What do you think about this solution?
We value your feedback to improve our textbook solutions.