Chapter 9: Problem 754
\(\lim _{\mathrm{x} \rightarrow 1}\left[\left\\{\left[{ }^{3} \sum_{\mathrm{i}=1}(\mathrm{x}+\mathrm{i})^{\mathrm{i}}\right]-75\right\\} /(\mathrm{x}-1)\right]=?\) (a) 75 (b) 65 (c) 55 (d) 45
Chapter 9: Problem 754
\(\lim _{\mathrm{x} \rightarrow 1}\left[\left\\{\left[{ }^{3} \sum_{\mathrm{i}=1}(\mathrm{x}+\mathrm{i})^{\mathrm{i}}\right]-75\right\\} /(\mathrm{x}-1)\right]=?\) (a) 75 (b) 65 (c) 55 (d) 45
All the tools & learning materials you need for study success - in one app.
Get started for free\(\lim _{\mathrm{x} \rightarrow(\pi / 8)}[\\{\operatorname{Sin} \mathrm{x}-\operatorname{Sin}(\mathrm{x} / 8)\\} /(8 \mathrm{x}-\pi)]=?\) (a) \((1 / 16)(2+\sqrt{2})\) (b) \((1 / 16)\\{\sqrt[2-\sqrt{(2)}]\\}\) (c) \((1 / 16)(2-\sqrt{2})\)
\(\lim _{\mathrm{y} \rightarrow(0)+}\left[\left({ }^{3} \sqrt{\mathrm{y}}+{ }^{3} \sqrt{\mathrm{y}}^{2}-{ }^{4} \sqrt{\mathrm{y}}^{3}\right) /\left({ }^{3} \sqrt{\mathrm{y}}+\sqrt{\mathrm{y}}+{ }^{4} \sqrt{\mathrm{y}}^{3}\right)\right]\) (a) \(-1\) (b) Limit does not exist (c) 1 (d) 0
If \(\mathrm{f}(\mathrm{x})=\left[\left(\mathrm{e}^{(1 / \mathrm{x})}-\mathrm{e}^{-(1 / \mathrm{x})}\right) /\left(\mathrm{e}^{(1 / \mathrm{x})}+\mathrm{e}^{-(1 / \mathrm{x})}\right)\right], \mathrm{x} \neq 0\) and \(\lim _{\mathrm{x} \rightarrow(0+)+} \mathrm{f}(\mathrm{x})=\mathrm{a}, \lim _{\mathrm{x} \rightarrow(0)-} \mathrm{f}(\mathrm{x})=\mathrm{b}\) then the value of \(\mathrm{a}\) and \(\mathrm{b}\) are: (a) \(\mathrm{a}=1, \mathrm{~b}=-1\) (b) \(a=0, b=1\) (c) \(a=-1, b=1\) (d) \(\mathrm{a}=1, \mathrm{~b}=0\)
If \((\mathrm{a} / 2)\) and \((\mathrm{b} / 2)\) be two distinct real roots of \(\ell \mathrm{x}^{2}+\mathrm{mx}+\mathrm{n}=0\) then \(\lim _{\mathrm{x} \rightarrow(\mathrm{a} / 2)}\left[\left\\{1-\operatorname{Cos}\left(\ell \mathrm{x}^{2}+\mathrm{mx}+\mathrm{n}\right)\right\\} /(2 \mathrm{x}-\mathrm{a})^{2}\right]=?\) (Where \(\ell=0, \mathrm{a}, \mathrm{b} \in \mathrm{R})\) (a) \(\left[\ell^{2} /\left\\{8(\mathrm{a}-\mathrm{b})^{2}\right\\}\right]\) (b) \(\left(\ell^{2} / 32\right)\left(a^{2}-b^{2}\right)\) (c) \(\left(\ell^{2} / 32\right)(\mathrm{a}-\mathrm{b})^{2}\) (d) \(\left(\ell^{2} / 16\right)\left(a^{2}-b^{2}\right)\)
\(\lim _{\mathrm{x} \rightarrow 0}\left[\left\\{(1+99 \mathrm{x})^{100}-(1+100 \mathrm{x})^{99}\right\\} / \mathrm{x}^{2}\right]=?\) (a) \(-4950\) (b) 4950 (c) 9950 (d) \(-9900\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.