\(\lim _{\mathrm{x} \rightarrow 1}\left[\left\\{\left[{ }^{3} \sum_{\mathrm{i}=1}(\mathrm{x}+\mathrm{i})^{\mathrm{i}}\right]-75\right\\} /(\mathrm{x}-1)\right]=?\) (a) 75 (b) 65 (c) 55 (d) 45

Short Answer

Expert verified
The short answer based on the provided step-by-step solution is: None of the given options match the calculated limit, which is 157. There might have been a typo in the question or answer choices.

Step by step solution

01

Identify the form of the expression

The given expression is in the form of \[\lim_{x \to 1}\frac{f(x)}{g(x)}\] where \(f(x)=\left[\left({}^{3}\sum_{i=1}(x+i)^{i}\right)-75\right]\) and \(g(x)=x-1\). To apply L'Hôpital's rule, we need to find the derivatives of both f(x) and g(x).
02

Find the derivative f'(x)

To find the derivative of f(x), we need to differentiate term by term in the sum. Note that f(x) can also be written as \[f(x) = (x+1)^1 + (x+2)^2 +(x+3)^3 - 75.\] Using the power and chain rule, we have: \[f'(x) = 1\cdot (x+1)^0 + 2(x+2)(x+2)^1 + 3(x+3)^2(x+3)^1\] \[f'(x) = 1 + 4(x+2) + 9(x+3)^2\]
03

Find the derivative g'(x)

Now, we need to find the derivative of g(x): \(g'(x) = \frac{d}{dx}(x-1)\). This is a simple derivative, resulting in: \[g'(x) = 1\]
04

Evaluate the limit using L'Hôpital's rule

Now we have both derivatives and can apply L'Hôpital's rule by taking the limit as x approaches 1 for the ratio of the derivatives: \[\lim_{x \to 1}\frac{f'(x)}{g'(x)} = \lim_{x \to 1}\frac{1 + 4(x+2) + 9(x+3)^2}{1}\] Substitute x = 1 into f'(x): \[\lim_{x \to 1}f'(x) = 1 + 4(1+2) + 9(1+3)^2 = 1 + 12 + 9\cdot16 = 1+12+144 = 157\] Therefore, the limit of the given expression as x approaches 1 is 157. However, none of the given options (a, b, c, or d) match the calculated answer. There might be a typo in the question or answer choices.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

\(\lim _{\mathrm{x} \rightarrow(\pi / 8)}[\\{\operatorname{Sin} \mathrm{x}-\operatorname{Sin}(\mathrm{x} / 8)\\} /(8 \mathrm{x}-\pi)]=?\) (a) \((1 / 16)(2+\sqrt{2})\) (b) \((1 / 16)\\{\sqrt[2-\sqrt{(2)}]\\}\) (c) \((1 / 16)(2-\sqrt{2})\)

\(\lim _{\mathrm{y} \rightarrow(0)+}\left[\left({ }^{3} \sqrt{\mathrm{y}}+{ }^{3} \sqrt{\mathrm{y}}^{2}-{ }^{4} \sqrt{\mathrm{y}}^{3}\right) /\left({ }^{3} \sqrt{\mathrm{y}}+\sqrt{\mathrm{y}}+{ }^{4} \sqrt{\mathrm{y}}^{3}\right)\right]\) (a) \(-1\) (b) Limit does not exist (c) 1 (d) 0

If \(\mathrm{f}(\mathrm{x})=\left[\left(\mathrm{e}^{(1 / \mathrm{x})}-\mathrm{e}^{-(1 / \mathrm{x})}\right) /\left(\mathrm{e}^{(1 / \mathrm{x})}+\mathrm{e}^{-(1 / \mathrm{x})}\right)\right], \mathrm{x} \neq 0\) and \(\lim _{\mathrm{x} \rightarrow(0+)+} \mathrm{f}(\mathrm{x})=\mathrm{a}, \lim _{\mathrm{x} \rightarrow(0)-} \mathrm{f}(\mathrm{x})=\mathrm{b}\) then the value of \(\mathrm{a}\) and \(\mathrm{b}\) are: (a) \(\mathrm{a}=1, \mathrm{~b}=-1\) (b) \(a=0, b=1\) (c) \(a=-1, b=1\) (d) \(\mathrm{a}=1, \mathrm{~b}=0\)

If \((\mathrm{a} / 2)\) and \((\mathrm{b} / 2)\) be two distinct real roots of \(\ell \mathrm{x}^{2}+\mathrm{mx}+\mathrm{n}=0\) then \(\lim _{\mathrm{x} \rightarrow(\mathrm{a} / 2)}\left[\left\\{1-\operatorname{Cos}\left(\ell \mathrm{x}^{2}+\mathrm{mx}+\mathrm{n}\right)\right\\} /(2 \mathrm{x}-\mathrm{a})^{2}\right]=?\) (Where \(\ell=0, \mathrm{a}, \mathrm{b} \in \mathrm{R})\) (a) \(\left[\ell^{2} /\left\\{8(\mathrm{a}-\mathrm{b})^{2}\right\\}\right]\) (b) \(\left(\ell^{2} / 32\right)\left(a^{2}-b^{2}\right)\) (c) \(\left(\ell^{2} / 32\right)(\mathrm{a}-\mathrm{b})^{2}\) (d) \(\left(\ell^{2} / 16\right)\left(a^{2}-b^{2}\right)\)

\(\lim _{\mathrm{x} \rightarrow 0}\left[\left\\{(1+99 \mathrm{x})^{100}-(1+100 \mathrm{x})^{99}\right\\} / \mathrm{x}^{2}\right]=?\) (a) \(-4950\) (b) 4950 (c) 9950 (d) \(-9900\)

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free