Chapter 9: Problem 770
If \(\mathrm{f}(\mathrm{x})=[\\{\tan [(\pi / 4)-\mathrm{x}]\\} /(\operatorname{Cot} 2 \mathrm{x})] \mathrm{x} \neq(\pi / 4)\). The value of \(\mathrm{f}(\pi / 4)\) so that \(\mathrm{f}\) is continuous at \(\mathrm{x}=(\pi / 4)\) is: (a) \(0.50\) (b) \(0.25\) (c) \(0.75\) (d) \(1.25\)