Chapter 9: Problem 771
\(\mathrm{f}(\mathrm{x})=\mid \begin{array}{ll}\left(3 / \mathrm{x}^{2}\right) \sin 2 \mathrm{x}^{2}, & \mathrm{x}<0 \\ {\left[\left(\mathrm{x}^{2}+2 \mathrm{x}+\mathrm{c}\right) /\left(1-3 \mathrm{x}^{2}\right)\right],} & \mathrm{x} \in[0, \infty)-\\{1 / \sqrt{3}\\} \\ 0, & \mathrm{x}=(1 / \sqrt{3})\end{array}\) then in order that \(\mathrm{f}\) to be is continuous at \(\mathrm{x}=0\), value of \(\mathrm{c}\) is: (a) 2 (b) 4 (c) 6 (d) 8
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.