If \(=\mid \begin{array}{ll}\mathrm{x}+\mathrm{a} \sqrt{2} \operatorname{Sin} \mathrm{x}, & 0 \leq \mathrm{x} \leq(\pi / 4) \\ 2 \mathrm{x} \operatorname{Cot} \mathrm{x}+\mathrm{b}, & {[(\pi / 4)<\mathrm{x} \leq(\pi / 2)]} \\ \mathrm{a} \operatorname{Cos} 2 \mathrm{x}+\mathrm{b} \operatorname{Sin} \mathrm{x}, & (\pi / 2)<\mathrm{x} \leq \pi\end{array}\) is continuous on \([0, \pi]\), then \(\mathrm{a}=\ldots \ldots\) and \(\mathrm{b}=\ldots \ldots .\) (a) \(\mathrm{a}=(5 \pi / 2), \mathrm{b}=(5 \pi / 4)\) (b) \(\mathrm{a}=-(5 \pi / 2), \mathrm{b}=-(5 \pi / 4)\) (c) \(\mathrm{a}=(\pi / 6), \mathrm{b}=[(-\pi) / 12]\) (d) \(\mathrm{a}=-(5 \pi / 4), \mathrm{b}=(5 \pi / 2)\)

Short Answer

Expert verified
The short answer is: \(\mathrm{a}=(\frac{5 \pi}{2}), \mathrm{b}=(\frac{5 \pi}{4})\).

Step by step solution

01

Analyze the first two parts of the function

At the point \(x = \pi/4\), the first and second parts of the function meet. To ensure continuity, we'll need to make sure that the output of the first and second parts are equal at \(x = \pi/4\): \((x+a\sqrt{2}\sin{x})|_{x=\pi/4} = (2xCot{x}+b)|_{x=\pi/4}\)
02

Calculate the outputs at \(x = \pi/4\)

Now, we'll calculate the outputs of both functions at \(x = \pi/4\): \(\pi/4 + a\sqrt{2}\sin{(\frac{\pi}{4})} = \frac{2(\pi/4)\cot{(\pi/4)}}{b}\)
03

Simplify and solve for a

We can simplify the equation further: \(\pi/4 + a\sqrt{2}\cdot\frac{\sqrt{2}}{2} = \pi/2 + b\) Now, solve for 'a': \(a = \frac{5\pi}{2} - 2b\)
04

Analyze the second and third parts of the function

At the point \(x = \pi/2\), the second and third parts of the function meet. To ensure continuity, we'll need to make sure that the output of the second and third parts are equal at \(x = \pi/2\): \((2xCot{x}+b)|_{x=\pi/2} = (a\cos{2x} + b\sin{x})|_{x=\pi/2}\)
05

Calculate the outputs at \(x = \pi/2\)

Now, we'll calculate the outputs of both functions at \(x = \pi/2\): \((a\cos{\pi} + b\sin{\frac{\pi}{2}}) = (2(\pi/2)\operatorname{Cot}{(\pi/2)}+b)\)
06

Simplify and solve for a

We can simplify the equation further: \(b = -a + b\) Substituting the expression of 'a' from step 3, we get: \(b=(-\frac{5\pi}{2}+2b)\) Now we can solve for 'b': \(b = \frac{5\pi}{4}\) Finally, substituting the value of b found above into the equation from step 1, we obtain the value of a: \(a = \frac{5\pi}{2} - 2 \cdot \frac{5\pi}{4} = \frac{5\pi}{2}\) After finding the values of 'a' and 'b', we can choose the correct answer. The answer is (a) \(\mathrm{a}=(5 \pi / 2), \mathrm{b}=(5 \pi / 4)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The value of \(\mathrm{k}(\mathrm{k}>0)\) for which the function \(\mathrm{f}(\mathrm{x})=\left[\left(\mathrm{e}^{\mathrm{x}}-1\right)^{4} /\left\\{\operatorname{Sin}\left(\mathrm{x}^{2} / \mathrm{k}^{2}\right) \log \left[1+\left(\mathrm{x}^{2} / 2\right)\right]\right\\}\right]\) \(\mathrm{x} \neq 0, \mathrm{f}(0)=8\) may be continuous at \(\mathrm{x}=0\) is: (a) 1 (b) 2 (c) 4 (d) 3

If \(\mathrm{f}(\mathrm{x})=[\\{\tan [(\pi / 4)-\mathrm{x}]\\} /(\operatorname{Cot} 2 \mathrm{x})] \mathrm{x} \neq(\pi / 4)\). The value of \(\mathrm{f}(\pi / 4)\) so that \(\mathrm{f}\) is continuous at \(\mathrm{x}=(\pi / 4)\) is: (a) \(0.50\) (b) \(0.25\) (c) \(0.75\) (d) \(1.25\)

If \(\mathrm{f}(\mathrm{x})=\mid \begin{array}{ll}(\operatorname{Sin} 2 \mathrm{x})^{(\tan ) 2(2 \mathrm{x}) ;} ; & \mathrm{x} \neq(\pi / 4) \\\ \mathrm{K} ; & \mathrm{x}=(\pi / 4)\end{array}\) is continuous \(\mathrm{x} \neq(\pi / 4)\) then the value of \(\mathrm{K}\) is: (a) \(\mathrm{e}^{(1 / 2)}\) (b) \(\mathrm{e}^{-(1 / 2)}\) (c) \(\mathrm{e}^{2}\) (d) \(\mathrm{e}^{-2}\)

\(\lim _{\mathrm{x} \rightarrow 0}\left[\left\\{\sqrt{\left.\left. \left.\left(5+\mathrm{x}^{5}\right)-\sqrt{(5-\mathrm{x}}^{5}\right)\right\\} / \mathrm{x}^{5}\right]}=?\right.\right.\) (a) 5 (b) 25 (c) \((\sqrt{5})^{-1}\) (d) \(4 \sqrt{5}\)

If \((\mathrm{a} / 2)\) and \((\mathrm{b} / 2)\) be two distinct real roots of \(\ell \mathrm{x}^{2}+\mathrm{mx}+\mathrm{n}=0\) then \(\lim _{\mathrm{x} \rightarrow(\mathrm{a} / 2)}\left[\left\\{1-\operatorname{Cos}\left(\ell \mathrm{x}^{2}+\mathrm{mx}+\mathrm{n}\right)\right\\} /(2 \mathrm{x}-\mathrm{a})^{2}\right]=?\) (Where \(\ell=0, \mathrm{a}, \mathrm{b} \in \mathrm{R})\) (a) \(\left[\ell^{2} /\left\\{8(\mathrm{a}-\mathrm{b})^{2}\right\\}\right]\) (b) \(\left(\ell^{2} / 32\right)\left(a^{2}-b^{2}\right)\) (c) \(\left(\ell^{2} / 32\right)(\mathrm{a}-\mathrm{b})^{2}\) (d) \(\left(\ell^{2} / 16\right)\left(a^{2}-b^{2}\right)\)

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free