Chapter 9: Problem 787
If \(f(x)=\mid \begin{array}{ll}{\left[\left(e^{a x}-e^{x}-x\right) / x^{2}\right] ;} & x \neq 0 \\ (3 / 2) ; & x=0\end{array}\) is continuous function then the value of a is: (a) 1 (b) \(-1\) (c) 4 (d) 2
Chapter 9: Problem 787
If \(f(x)=\mid \begin{array}{ll}{\left[\left(e^{a x}-e^{x}-x\right) / x^{2}\right] ;} & x \neq 0 \\ (3 / 2) ; & x=0\end{array}\) is continuous function then the value of a is: (a) 1 (b) \(-1\) (c) 4 (d) 2
All the tools & learning materials you need for study success - in one app.
Get started for free\(\lim _{\mathrm{y} \rightarrow(0)+}\left[\left({ }^{3} \sqrt{\mathrm{y}}+{ }^{3} \sqrt{\mathrm{y}}^{2}-{ }^{4} \sqrt{\mathrm{y}}^{3}\right) /\left({ }^{3} \sqrt{\mathrm{y}}+\sqrt{\mathrm{y}}+{ }^{4} \sqrt{\mathrm{y}}^{3}\right)\right]\) (a) \(-1\) (b) Limit does not exist (c) 1 (d) 0
\(\lim _{\mathrm{x} \rightarrow 3}\left[\left\\{\sqrt{(} \mathrm{x}^{2}+\mathrm{x}+3\right)-\sqrt{(4 \mathrm{x}+3)\\}} /\left(\mathrm{x}^{4}-81\right)\right]=?\) (a) \([1 /(24 \sqrt{3})]\) (b) \([1 /\\{72 \sqrt{(15)\\}]}\) (c) \([1 /(72 \sqrt{3})]\) (d) \([1 /\\{24 \sqrt{(15)\\}]}\)
Let \(\mathrm{f}\) be a non zero continuous function satisfying \(\mathrm{f}(\mathrm{x}+\mathrm{y})=\mathrm{f}(\mathrm{x}) \mathrm{f}(\mathrm{y}), \forall \mathrm{x}, \mathrm{y} \in \mathrm{R}\), If \(\mathrm{f}(\mathrm{z})=9\) then \(\mathrm{f}(3)=?\) (a) 1 (b) 27 (c) 9 (d) 6
\(\lim _{\mathrm{x} \rightarrow(\pi / 2)}[\\{\sin (\cos \mathrm{x}) \cos \mathrm{x}\\} /\\{\sin \mathrm{x}-\operatorname{cosec} \mathrm{x}\\}]=?\) (a) 0 (b) 1 (c) Limit does not exist (d) \(-1\)
Let a function \(\mathrm{f}\) be defined by \(\mathrm{f}(\mathrm{x})=[(\mathrm{x}-|\mathrm{x}|) / \mathrm{x}], \mathrm{x} \neq 0\) and \(\mathrm{f}(0)=2\), then \(\mathrm{f}\) is: (a) Continuous no where (b) Continuous everywhere (c) Continuous for all \(\mathrm{x}\) except \(\mathrm{x}=1\) (d) Continuous for all \(x\) except \(x=0\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.