Chapter 1: Problem 108
The number of significant figures in \(0.000150\) is .............. (a) 3 (b) 5 (c) 2 (d) 4
Chapter 1: Problem 108
The number of significant figures in \(0.000150\) is .............. (a) 3 (b) 5 (c) 2 (d) 4
All the tools & learning materials you need for study success - in one app.
Get started for freeWhich physical quantity has unit of pascal - second? (a) Force (b) Energy (c) Coefficient of viscosity (d) velocity
Match column - I with column - II $$ \begin{array}{|l|l|} \hline \multicolumn{1}{|c|} {\text { Column - I }} & \multicolumn{1}{|c|} {\text { Column - II }} \\ \hline \text { (1) capacitance } & \text { (a) } \mathrm{M}^{1} \mathrm{~L}^{1} \mathrm{~T}^{-3} \mathrm{~A}^{-1} \\ \hline \text { (2) Electricfield } & \text { (b) } \mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-1} \\ \hline \text { (3) planck's constant } & \text { (c) } \mathrm{M}^{-1} \mathrm{~L}^{-2} \mathrm{~T}^{4} \mathrm{~A}^{2} \\ \hline \text { (4) Angular momentum } & \text { (d) } \mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-1} \\ \hline \end{array} $$ (a) \(a, c, b, d\) (b) \(c, a, d, b\) (c) \(c, a, b, d\) (d) \(a, b, d, c\)
In the relation $P=(\alpha / \beta) \mathrm{e}[\\{-\alpha z\\} /\\{(\mathrm{k}) \beta \theta\\}], \mathrm{P}\( is pressure, \)\mathrm{z}$ is distance, \(\mathrm{k}\) is Boltzmann constant and \(\theta\) is the temperature. The dimensional formula of \(B\) will be (a) \(\mathrm{M}^{0} \mathrm{~L}^{2} \mathrm{~T}^{0}\) (b) \(\mathrm{M}^{1} \mathrm{~L}^{0} \mathrm{~T}^{1}\) (c) \(\mathrm{M}^{1} \mathrm{~L}^{1} \mathrm{~T}^{-1}\) (d) \(\mathrm{M}^{1} \mathrm{~L}^{1} \mathrm{~T}^{0}\) Copyright \(\odot\) StemEZ.com. All rights reserved.
Write dimensional formula of coefficient of viscosity (a) \(\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-1}\) (b) \(\mathrm{M}^{-1} \mathrm{~L}^{1} \mathrm{~T}^{1}\) (c) \(\mathrm{M}^{1} \mathrm{~L}^{-1} \mathrm{~T}^{-1}\) (d) \(\mathrm{M}^{1} \mathrm{~L}^{1} \mathrm{~T}^{-1}\)
Dimensional formula for electromotive force (emf) (a) \(\mathrm{M}^{2} \mathrm{~L}^{1} \mathrm{~T}^{-1} \mathrm{~A}^{-3}\) (b) \(\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-3} \mathrm{~A}^{-1}\) (c) \(\mathrm{M}^{1} \mathrm{~L}^{1} \mathrm{~T}^{-3} \mathrm{~A}^{-1}\) (d) \(\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{3} \mathrm{~A}^{-1}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.