Chapter 1: Problem 115
Subtract \(0.2 \mathrm{~J}\) from \(7.36 \mathrm{~J}\) and express the result with correct number of significant figures. (a) \(7.160 \mathrm{~J}\) (b) \(7.016 \mathrm{~J}\) (c) \(7.16 \mathrm{~J}\) (d) \(7.2 \mathrm{~J}\)
Chapter 1: Problem 115
Subtract \(0.2 \mathrm{~J}\) from \(7.36 \mathrm{~J}\) and express the result with correct number of significant figures. (a) \(7.160 \mathrm{~J}\) (b) \(7.016 \mathrm{~J}\) (c) \(7.16 \mathrm{~J}\) (d) \(7.2 \mathrm{~J}\)
All the tools & learning materials you need for study success - in one app.
Get started for free
If \(L\) and \(R\) are represented as the inductance and resistance respectively then the dimensional formula of \(R /\) will be \(\ldots \ldots\) (a) \(\mathrm{M}^{-2} \mathrm{~L}^{1} \mathrm{~T}^{-2} \mathrm{~A}^{1}\) (b) \(\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{-1} \mathrm{~A}^{0}\) (c) \(\mathrm{M}^{1} \mathrm{~L}^{-1} \mathrm{~T}^{0} \mathrm{~A}^{1}\) (d) \(\mathrm{M}^{1} \mathrm{~L}^{3} \mathrm{~T}^{1} \mathrm{~A}^{0}\)
How many significant numbers are there in \((2.30 \pm 4.70) \times 10^{5} ?\) (a) 3 (b) 4 (c) 2 (d) 5
If the length of rod \(\mathrm{A}\) is \((2.35 \pm 0.01) \mathrm{cm}\) and that of \(\mathrm{B}\) is \((5.68 \pm 0.01) \mathrm{cm}\) then the rod \(\mathrm{B}\) is longer than \(\mathrm{rod} \mathrm{A}\) by \(\ldots\) (a) \((2.43 \pm 0.00) \mathrm{cm}\) (b) \((3.33 \pm 0.02) \mathrm{cm}\) (c) \((2.43 \pm 0.01) \mathrm{cm}\) (d) \((2.43 \pm 0.001) \mathrm{cm}\)
Find the dimensional formula for energy per unit surface area per unit time (a) \(\mathrm{M}^{1} \mathrm{~L}^{0} \mathrm{~T}^{-2}\) (b) \(\mathrm{M}^{0} \mathrm{~L}^{1} \mathrm{~T}^{-1}\) (c) \(\mathrm{M}^{1} \mathrm{~L}^{0} \mathrm{~T}^{-3}\) (d) \(\mathrm{M}^{1} \mathrm{~L}^{-1} \mathrm{~T}^{1}\)
The unit of Stefen Boltzman constant \((\sigma)\) is ............ (a) \(\mathrm{w}^{2} \mathrm{~m}^{-2} \mathrm{k}^{-1}\) (b) \(\mathrm{w} \mathrm{m}^{2} \mathrm{k}^{-3}\) (c) \(\mathrm{w} \mathrm{m}^{-2} \mathrm{k}^{4}\) (d) \(\mathrm{w} \mathrm{m}^{-2} \mathrm{k}^{-4}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.