Chapter 1: Problem 117
How many significant numbers are there in \((2.30 \pm 4.70) \times 10^{5} ?\) (a) 3 (b) 4 (c) 2 (d) 5
Chapter 1: Problem 117
How many significant numbers are there in \((2.30 \pm 4.70) \times 10^{5} ?\) (a) 3 (b) 4 (c) 2 (d) 5
All the tools & learning materials you need for study success - in one app.
Get started for freeIf the length of rod \(\mathrm{A}\) is \((2.35 \pm 0.01) \mathrm{cm}\) and that of \(\mathrm{B}\) is \((5.68 \pm 0.01) \mathrm{cm}\) then the rod \(\mathrm{B}\) is longer than \(\mathrm{rod} \mathrm{A}\) by \(\ldots\) (a) \((2.43 \pm 0.00) \mathrm{cm}\) (b) \((3.33 \pm 0.02) \mathrm{cm}\) (c) \((2.43 \pm 0.01) \mathrm{cm}\) (d) \((2.43 \pm 0.001) \mathrm{cm}\)
Dimensions of impulse are. (a) \(\mathrm{M}^{-1} \mathrm{~L}^{-1} \mathrm{~T}^{1}\) (b) $\mathrm{M}^{1} \mathrm{~L}^{1} \mathrm{~T}^{-1}$ (c) \(\mathrm{M}^{1} \mathrm{~L}^{1} \mathrm{~T}^{1}\) (d) \(\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-2}\)
Dimensional formula for electromotive force (emf) (a) \(\mathrm{M}^{2} \mathrm{~L}^{1} \mathrm{~T}^{-1} \mathrm{~A}^{-3}\) (b) \(\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-3} \mathrm{~A}^{-1}\) (c) \(\mathrm{M}^{1} \mathrm{~L}^{1} \mathrm{~T}^{-3} \mathrm{~A}^{-1}\) (d) \(\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{3} \mathrm{~A}^{-1}\)
\( 1\) parsec \(=\ldots \ldots \ldots \ldots \ldots\) (a) \(10^{-15} \mathrm{~m}\) (b) \(1.496 \times 10^{11} \mathrm{~m}\) (c) \(1.496 \times 10^{15} \mathrm{~m}\) (d) \(3.08 \times 10^{16} \mathrm{~m}\)
What is the least count of vernier callipers? (a) \(10^{-4} \mathrm{~m}\) (b) \(10^{-5} \mathrm{~m}\) (c) \(10^{-2} \mathrm{~m}\) (d) \(10^{-3} \mathrm{~m}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.