Dimensional formula for thermal conductivity (k) is.. (a) \(\mathrm{M}^{2} \mathrm{~L}^{1} \mathrm{~T}^{-2} \mathrm{~K}^{-1}\) (b) \(\mathrm{M}^{1} \mathrm{~L}^{1} \mathrm{~T}^{-2} \mathrm{~K}^{1}\) (c) \(\mathrm{M}^{1} \mathrm{~L}^{0} \mathrm{~T}^{-3} \mathrm{~K}^{-1}\) (d) \(\mathrm{M}^{1} \mathrm{~L}^{1} \mathrm{~T}^{-3} \mathrm{~K}^{-1}\)

Short Answer

Expert verified
The dimensional formula for thermal conductivity (k) is \(\mathrm{M}^{1} \mathrm{~L}^{1} \mathrm{~T}^{-3} \mathrm{~K}^{-1}\).

Step by step solution

01

Write down the formula

Write the formula for the Fourier's law of heat conduction: \(Q/t = -kA\frac{dT}{dx}\)
02

Rearrange the formula to solve for k

Rearrange the formula to isolate the thermal conductivity (k) on one side: \(k = \frac{Q}{t}\frac{dx}{A \, dT}\)
03

Find the dimensions of each term

Identify the dimensions of each physical quantity in the formula: - Rate of heat transfer (\(\frac{Q}{t}\)): \(\mathrm{kgs^{-3}}\) - Thickness (dx): \(\mathrm{L}\) - Cross-sectional area (A): \(\mathrm{L^2}\) - Change in temperature (dT): \(\mathrm{K}\)
04

Substitute the dimensions in the formula for k

Substitute the dimensions of all the physical quantities in the formula for k: \(k = \frac{\mathrm{kgs^{-3}}}{\mathrm{L^2} \, \mathrm{K}} \times \mathrm{L} = \mathrm{kgLs^{-3}K^{-1}}\)
05

Compare the dimensional formula with given options

Compare the obtained dimensional formula for the thermal conductivity with the given options: (a) \(\mathrm{M}^{2} \mathrm{~L}^{1} \mathrm{~T}^{-2} \mathrm{~K}^{-1}\) (b) \(\mathrm{M}^{1} \mathrm{~L}^{1} \mathrm{~T}^{-2} \mathrm{~K}^{1}\) (c) \(\mathrm{M}^{1} \mathrm{~L}^{0} \mathrm{~T}^{-3} \mathrm{~K}^{-1}\) (d) \(\mathrm{M}^{1} \mathrm{~L}^{1} \mathrm{~T}^{-3} \mathrm{~K}^{-1}\) We can see that our obtained dimensional formula for thermal conductivity (k) matches option (d): \(\mathrm{M}^{1} \mathrm{~L}^{1} \mathrm{~T}^{-3} \mathrm{~K}^{-1}\) Hence, the dimensional formula for thermal conductivity (k) is \(\mathrm{M}^{1} \mathrm{~L}^{1} \mathrm{~T}^{-3} \mathrm{~K}^{-1}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free