Chapter 1: Problem 127
Which physical quantity is represented by $\mathrm{M}^{1} \mathrm{~L}^{3} \mathrm{~T}^{-3} \mathrm{~A}^{-2}$ ? (a) Resistivity (b) Resistance (c) conductance (d) conductivity
Chapter 1: Problem 127
Which physical quantity is represented by $\mathrm{M}^{1} \mathrm{~L}^{3} \mathrm{~T}^{-3} \mathrm{~A}^{-2}$ ? (a) Resistivity (b) Resistance (c) conductance (d) conductivity
All the tools & learning materials you need for study success - in one app.
Get started for freeA particle has an acceleration of \(72 \mathrm{~km} / \mathrm{min}^{2}\) find acceleration in SI system. (a) \(0.5 \mathrm{~m} / \mathrm{s}^{2}\) (b) \(30 \mathrm{~m} / \mathrm{s}^{2}\) (c) \(18 \mathrm{~m} / \mathrm{s}^{2}\) (d) \(20 \mathrm{~m} / \mathrm{s}^{2}\)
If $\mathrm{P}=\left[\left(\mathrm{A}^{2} \mathrm{~B}\right) /\left(\mathrm{C}^{3}\right)\right]\( where percentage error in \)\mathrm{A}, \mathrm{B}\( and \)\mathrm{C}$ are respectively \(\pm 2 \% \pm 3 \%\) and \(\pm 5 \%\) then total percentage error in measurement of \(\mathrm{p}\) (a) \(18 \%\) (b) \(14 \%\) (c) \(21 \%\) (d) \(12 \%\)
Match column - I with column - II $$ \begin{array}{|l|l|} \hline \multicolumn{1}{|c|} {\text { Column - I }} & \multicolumn{1}{|c|} {\text { Column - II }} \\ \hline \text { (1) capacitance } & \text { (a) } \mathrm{M}^{1} \mathrm{~L}^{1} \mathrm{~T}^{-3} \mathrm{~A}^{-1} \\ \hline \text { (2) Electricfield } & \text { (b) } \mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-1} \\ \hline \text { (3) planck's constant } & \text { (c) } \mathrm{M}^{-1} \mathrm{~L}^{-2} \mathrm{~T}^{4} \mathrm{~A}^{2} \\ \hline \text { (4) Angular momentum } & \text { (d) } \mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-1} \\ \hline \end{array} $$ (a) \(a, c, b, d\) (b) \(c, a, d, b\) (c) \(c, a, b, d\) (d) \(a, b, d, c\)
What is the least count of vernier callipers? (a) \(10^{-4} \mathrm{~m}\) (b) \(10^{-5} \mathrm{~m}\) (c) \(10^{-2} \mathrm{~m}\) (d) \(10^{-3} \mathrm{~m}\)
If the length of rod \(\mathrm{A}\) is \((2.35 \pm 0.01) \mathrm{cm}\) and that of \(\mathrm{B}\) is \((5.68 \pm 0.01) \mathrm{cm}\) then the rod \(\mathrm{B}\) is longer than \(\mathrm{rod} \mathrm{A}\) by \(\ldots\) (a) \((2.43 \pm 0.00) \mathrm{cm}\) (b) \((3.33 \pm 0.02) \mathrm{cm}\) (c) \((2.43 \pm 0.01) \mathrm{cm}\) (d) \((2.43 \pm 0.001) \mathrm{cm}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.