Which physical quantity is represented by $\mathrm{M}^{1} \mathrm{~L}^{3} \mathrm{~T}^{-3} \mathrm{~A}^{-2}$ ? (a) Resistivity (b) Resistance (c) conductance (d) conductivity

Short Answer

Expert verified
The given dimensional formula \(\mathrm{M^{1}L^{3}T^{-3}A^{-2}}\) does not represent any of the given physical quantities (resistivity, resistance, conductance, or conductivity).

Step by step solution

01

(a) Resistivity #

The dimensional formula for resistivity, denoted by \(\rho\), is: $$\rho = \frac{\mathrm{M}^{0} \mathrm{L}^{3} \mathrm{T}^{-3} \mathrm{A}^{-2}}{\mathrm{M}^{0} \mathrm{L}^{1} \mathrm{T}^{0} \mathrm{A}^{0}} = \mathrm{M}^{0} \mathrm{L}^{3-1} \mathrm{T}^{-3} \mathrm{A}^{-2} = \mathrm{M}^{0} \mathrm{L}^{2} \mathrm{T}^{-3} \mathrm{A}^{-2}$$
02

(b) Resistance #

The dimensional formula for resistance, denoted by R, is: $$R = \frac{\mathrm{M}^{0} \mathrm{L}^{3} \mathrm{T}^{-3} \mathrm{A}^{-2}}{\mathrm{M}^{0} \mathrm{L}^{2} \mathrm{T}^{0} \mathrm{A}^{0}} = \mathrm{M}^{0} \mathrm{L}^{3-2} \mathrm{T}^{-3} \mathrm{A}^{-2} = \mathrm{M}^{0} \mathrm{L}^{1} \mathrm{T}^{-3} \mathrm{A}^{-2}$$
03

(c) Conductance #

The dimensional formula for conductance, denoted by G, is: $$ G = \frac{1}{R} \implies G = \mathrm{M}^{0} \mathrm{L}^{-1} \mathrm{T}^{3} \mathrm{A}^{2}$$
04

(d) Conductivity #

The dimensional formula for conductivity, denoted by \(\sigma\), is: $$ \sigma = \frac{1}{\rho} \implies \sigma = \mathrm{M}^{0} \mathrm{L}^{-2} \mathrm{T}^{3} \mathrm{A}^{2} $$ # Step 2: Compare the given formula with each option # Now, we will compare the given dimensional formula \(\mathrm{M^{1}L^{3}T^{-3}A^{-2}}\) with the dimensional formulas of the given options. _resistivity_: \(\mathrm{M^{0}L^{2}T^{-3}A^{-2}}\) _resistance_: \(\mathrm{M^{0}L^{1}T^{-3}A^{-2}}\) _conductance_: \(\mathrm{M^{0}L^{-1}T^{3}A^{2}}\) _conductivity_: \(\mathrm{M^{0}L^{-2}T^{3}A^{2}}\) None of the given options match with the dimensional formula \(\mathrm{M^{1}L^{3}T^{-3}A^{-2}}\). Therefore, the given dimensional formula does not represent any of the given physical quantities (resistivity, resistance, conductance, or conductivity).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A particle has an acceleration of \(72 \mathrm{~km} / \mathrm{min}^{2}\) find acceleration in SI system. (a) \(0.5 \mathrm{~m} / \mathrm{s}^{2}\) (b) \(30 \mathrm{~m} / \mathrm{s}^{2}\) (c) \(18 \mathrm{~m} / \mathrm{s}^{2}\) (d) \(20 \mathrm{~m} / \mathrm{s}^{2}\)

If $\mathrm{P}=\left[\left(\mathrm{A}^{2} \mathrm{~B}\right) /\left(\mathrm{C}^{3}\right)\right]\( where percentage error in \)\mathrm{A}, \mathrm{B}\( and \)\mathrm{C}$ are respectively \(\pm 2 \% \pm 3 \%\) and \(\pm 5 \%\) then total percentage error in measurement of \(\mathrm{p}\) (a) \(18 \%\) (b) \(14 \%\) (c) \(21 \%\) (d) \(12 \%\)

Match column - I with column - II $$ \begin{array}{|l|l|} \hline \multicolumn{1}{|c|} {\text { Column - I }} & \multicolumn{1}{|c|} {\text { Column - II }} \\ \hline \text { (1) capacitance } & \text { (a) } \mathrm{M}^{1} \mathrm{~L}^{1} \mathrm{~T}^{-3} \mathrm{~A}^{-1} \\ \hline \text { (2) Electricfield } & \text { (b) } \mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-1} \\ \hline \text { (3) planck's constant } & \text { (c) } \mathrm{M}^{-1} \mathrm{~L}^{-2} \mathrm{~T}^{4} \mathrm{~A}^{2} \\ \hline \text { (4) Angular momentum } & \text { (d) } \mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-1} \\ \hline \end{array} $$ (a) \(a, c, b, d\) (b) \(c, a, d, b\) (c) \(c, a, b, d\) (d) \(a, b, d, c\)

What is the least count of vernier callipers? (a) \(10^{-4} \mathrm{~m}\) (b) \(10^{-5} \mathrm{~m}\) (c) \(10^{-2} \mathrm{~m}\) (d) \(10^{-3} \mathrm{~m}\)

If the length of rod \(\mathrm{A}\) is \((2.35 \pm 0.01) \mathrm{cm}\) and that of \(\mathrm{B}\) is \((5.68 \pm 0.01) \mathrm{cm}\) then the rod \(\mathrm{B}\) is longer than \(\mathrm{rod} \mathrm{A}\) by \(\ldots\) (a) \((2.43 \pm 0.00) \mathrm{cm}\) (b) \((3.33 \pm 0.02) \mathrm{cm}\) (c) \((2.43 \pm 0.01) \mathrm{cm}\) (d) \((2.43 \pm 0.001) \mathrm{cm}\)

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free