Dimensional formula for capacitance (C) (a) \(\mathrm{M}^{-1} \mathrm{~L}^{-2} \mathrm{~T}^{4} \mathrm{~A}^{2}\) (b) \(\mathrm{M}^{1} \mathrm{~L}^{-2} \mathrm{~T}^{4} \mathrm{~A}^{2}\) (c) \(\mathrm{M}^{-1} \mathrm{~L}^{-2} \mathrm{~T}^{3} \mathrm{~A}^{1}\) (d) \(\mathrm{M}^{3} \mathrm{~L}^{1} \mathrm{~T}^{-1} \mathrm{~A}^{-2}\)

Short Answer

Expert verified
The correct dimensional formula for capacitance (C) is \( \mathrm{M}^{-1}\mathrm{L}^{-2}\mathrm{T}^{4}\mathrm{A}^{2} \).

Step by step solution

01

Determine the dimensions of charge

Charge (Q) is the product of electric current (I) and time (t), so we have \(Q = It\). Since the dimension for the electric current (I) is A (for amperes) and the dimension for time (t) is T (for seconds), the dimensions of charge (Q) are $$[Q] = [I][t] = \mathrm{A}^{1}\mathrm{T}^{1}$$
02

Determine the dimensions of voltage

Voltage (V) can be expressed in terms of work (W) and charge (Q), i.e., \(V = \frac{W}{Q}\). Work (W) can also be expressed as the product of force (F) and distance (d), i.e., \(W = Fd\). Force (F) has the dimensions of mass (M), length (L), and time (T), given as \(\mathrm{M}^{1}\mathrm{L}^{1}\mathrm{T}^{-2}\). Thus, the dimensions of work (W) are $$[W] = [F][d] = \mathrm{M}^{1}\mathrm{L}^{2}\mathrm{T}^{-2}$$ Now, we can find the dimensions of voltage (V) using the dimensions of work (W) and charge (Q), so we have $$[V] = \frac{[W]}{[Q]} = \frac{\mathrm{M}^{1}\mathrm{L}^{2}\mathrm{T}^{-2}}{\mathrm{A}^{1}\mathrm{T}^{1}} = \mathrm{M}^{1}\mathrm{L}^{2}\mathrm{T}^{-3}\mathrm{A}^{-1}$$
03

Determine the dimensions of capacitance

Now, substitute the dimensions of charge (Q) and voltage (V) into the defining equation for capacitance $$[C] = \frac{[Q]}{[V]} = \frac{\mathrm{A}^{1}\mathrm{T}^{1}}{\mathrm{M}^{1}\mathrm{L}^{2}\mathrm{T}^{-3}\mathrm{A}^{-1}}$$ After canceling out the numerator and the denominator dimensions, we have $$[C] = \mathrm{M}^{-1}\mathrm{L}^{-2}\mathrm{T}^{4}\mathrm{A}^{2}$$
04

Identify the correct option

Looking at the given options, we find that the correct dimensional formula for capacitance (C) is option (a): $$\mathrm{M}^{-1}\mathrm{~L}^{-2}\mathrm{~T}^{4}\mathrm{~A}^{2}$$

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In the relation $P=(\alpha / \beta) \mathrm{e}[\\{-\alpha z\\} /\\{(\mathrm{k}) \beta \theta\\}], \mathrm{P}\( is pressure, \)\mathrm{z}$ is distance, \(\mathrm{k}\) is Boltzmann constant and \(\theta\) is the temperature. The dimensional formula of \(B\) will be (a) \(\mathrm{M}^{0} \mathrm{~L}^{2} \mathrm{~T}^{0}\) (b) \(\mathrm{M}^{1} \mathrm{~L}^{0} \mathrm{~T}^{1}\) (c) \(\mathrm{M}^{1} \mathrm{~L}^{1} \mathrm{~T}^{-1}\) (d) \(\mathrm{M}^{1} \mathrm{~L}^{1} \mathrm{~T}^{0}\) Copyright \(\odot\) StemEZ.com. All rights reserved.

The dimensional formula of plank's constant is ........... (a) \(\mathrm{M}^{3} \mathrm{~L}^{2} \mathrm{~T}^{-1}\) (b) \(\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-1}\) (c) \(\mathrm{M}^{2} \mathrm{~L}^{1} \mathrm{~T}^{-1}\) (d) \(\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-3}\)

Pressure \(P=\left(a t^{2} / b x\right)\) where \(x=\) distance, \(t=\) time find the dimensional formula for \(\mathrm{a} / \mathrm{b}\) (a) \(\mathrm{M}^{1} \mathrm{~L}^{0} \mathrm{~T}^{-4}\) (b) \(\mathrm{M}^{1} \mathrm{~L}^{1} \mathrm{~T}^{-1}\) (c) \(\mathrm{M}^{1} \mathrm{~L}^{0} \mathrm{~T}^{-2}\) (d) \(\mathrm{M}^{+1} \mathrm{~L}^{0} \mathrm{~T}^{-2}\)

The radius of circle is \(1.26 \mathrm{~cm}\). According to the concept of significant figures area of it can be represented as - (a) \(4.9850 \mathrm{~cm}^{2}\) (b) \(4.985 \mathrm{~cm}^{2}\) (c) \(4.98 \mathrm{~cm}^{2}\) (d) \(9.98 \mathrm{~cm}^{2}\)

950 dyne \(=\ldots \ldots \ldots \ldots \ldots\) newton (a) \(9.5 \times 10^{-3}\) (b) \(95 \times 10^{-5}\) (c) \(950 \times 10^{-7}\) (d) \(9.5 \times 10^{-4}\)

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free