Chapter 1: Problem 138
Which physical quantity has dimensional formula as \(\mathrm{CR}\) where \(\mathrm{C}\) - capacitance and \(\mathrm{R}\) - Resistance? (a) Frequency (b) current (c) Time period (d) acceleration
Chapter 1: Problem 138
Which physical quantity has dimensional formula as \(\mathrm{CR}\) where \(\mathrm{C}\) - capacitance and \(\mathrm{R}\) - Resistance? (a) Frequency (b) current (c) Time period (d) acceleration
All the tools & learning materials you need for study success - in one app.
Get started for free100 picometer \(=\ldots \ldots \ldots \ldots\) (a) \(10^{-8} \mathrm{~cm}\) (b) \(10^{-7} \mathrm{~m}\) (c) \(10 \times 10^{-6} \mu \mathrm{m}\) (d) \(10 \times 10^{-8} \mu \mathrm{m}\)
Which physical quantity has unit of pascal - second? (a) Velocity (b) viscosity (c) energy (d) coefficient of viscosity
Dimensional formula for torque is (a) \(\mathrm{M}^{2} \mathrm{~L}^{2} \mathrm{~T}^{-3}\) (b) \(\mathrm{M}^{2} \mathrm{~L}^{1} \mathrm{~T}^{-2}\) (c) \(\mathrm{M}^{1} \mathrm{~L}^{1} \mathrm{~T}^{-2}\) (d) \(\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-2}\)
Find the distance at which 4 AU would subtend an angle of exactly 1 " of arc. $\left[1 \mathrm{AU}=1.496 \times 10^{11} \mathrm{~m}, 1^{\prime \prime}=4.85 \times 10^{-6} \mathrm{rad}\right]$ (a) \(1.123 \times 10^{5} \mathrm{~m}\) (b) \(11.23 \times 10^{5} \mathrm{~m}\) (c) \(1.123 \times 10^{17} \mathrm{~m}\) (d) \(11.23 \times 10^{17} \mathrm{~m}\)
Which physical quantity is represented by $\mathrm{M}^{-1} \mathrm{~L}^{-3} \mathrm{~T}^{3} \mathrm{~A}^{2}$ ? (a) Resistivity (b) Resistance (c) conductance (d) conductivity
What do you think about this solution?
We value your feedback to improve our textbook solutions.