Dimensional formula of \(\mathrm{CV}\) ? where C - capacitance and \(\mathrm{V}\) - potential difference (a) \(\mathrm{M}^{1} \mathrm{~L}^{-2} \mathrm{~T}^{4} \mathrm{~A}^{2}\) (b) \(\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-3} \mathrm{~A}^{1}\) (c) \(\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{1} \mathrm{~A}^{-1}\) (d) \(\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{1} \mathrm{~A}^{1}\)

Short Answer

Expert verified
The dimensional formula of CV is \(\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{1} \mathrm{~A}^{1}\).

Step by step solution

01

Obtain the Dimensional formulas for Capacitance (C) and Potential Difference (V)

First, we need to know the dimensional formulas for capacitance and potential difference. The base dimensions are Mass (M), Length (L), Time (T), and Current (A). The dimensional formulas are as follows: Capacitance(C): [C] = \([M^{-1}L^{-2}T^4A^2]\) Potential Difference (V): [V] = \([M^1L^2T^{-3}A^{-1}]\)
02

Multiply the Dimensional Formulas of Capacitance and Voltage

To get the dimensional formula of CV, we need to multiply the dimensional formulas of capacitance and potential difference. \([CV] = [C] \times [V]\) \([CV] = [M^{-1}L^{-2}T^4A^2] \times [M^1L^2T^{-3}A^{-1}]\)
03

Simplify the Dimensional Formula for CV

Simplify by adding the exponents of the same base dimensions: \([CV] = [M^{-1+1}L^{-2+2}T^{4-3}A^{2-1}]\) \([CV] = [M^0L^0T^1A^1]\) Now let's check which of the given options matches the derived dimensional formula: (a) \(\mathrm{M}^{1} \mathrm{~L}^{-2} \mathrm{~T}^{4} \mathrm{~A}^{2}\) (b) \(\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-3} \mathrm{~A}^{1}\) (c) \(\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{1} \mathrm{~A}^{-1}\) (d) \(\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{1} \mathrm{~A}^{1}\) The correct dimensional formula for CV is option (d), which is \(\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{1} \mathrm{~A}^{1}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The mass of substance is \(75.5 \mathrm{gm}\) and its volume is $25 \mathrm{~cm}^{3}$. It's density up to the correct significant figure is \(\ldots \ldots \ldots \ldots \ldots\) (a) \(3.02 \mathrm{gm} / \mathrm{cm}^{3}\) (b) \(3.200 \mathrm{gm} / \mathrm{cm}^{3}\) (c) \(3.02 \mathrm{gm} / \mathrm{cm}^{3}\) (d) \(3.1 \mathrm{gm} / \mathrm{cm}^{3}\)

Equation of \(\ell_{1}=\ell_{0}\left[1+\alpha\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)\right]\) find out the dimensions of the coefficient of linear expansion \(\alpha\) suffix. (a) \(\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{1} \mathrm{~K}^{1}\) (b) \(\mathrm{M}^{0} \mathrm{~L}^{1} \mathrm{~T}^{1} \mathrm{~K}^{1}\) (c) \(\mathrm{M}^{1} \mathrm{~L}^{1} \mathrm{~T}^{0} \mathrm{~K}^{1}\) (d) \(\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0} \mathrm{~K}^{-1}\)

\([(1\) femtometer \() /(100\) nanometer \()]=\ldots \ldots \ldots \ldots \ldots\) (a) \(10^{-6}\) (b) \(10^{-8}\) (c) \(10^{24}\) (d) \(10^{-24}\)

In the relation $P=(\alpha / \beta) \mathrm{e}[\\{-\alpha z\\} /\\{(\mathrm{k}) \beta \theta\\}], \mathrm{P}\( is pressure, \)\mathrm{z}$ is distance, \(\mathrm{k}\) is Boltzmann constant and \(\theta\) is the temperature. The dimensional formula of \(B\) will be (a) \(\mathrm{M}^{0} \mathrm{~L}^{2} \mathrm{~T}^{0}\) (b) \(\mathrm{M}^{1} \mathrm{~L}^{0} \mathrm{~T}^{1}\) (c) \(\mathrm{M}^{1} \mathrm{~L}^{1} \mathrm{~T}^{-1}\) (d) \(\mathrm{M}^{1} \mathrm{~L}^{1} \mathrm{~T}^{0}\) Copyright \(\odot\) StemEZ.com. All rights reserved.

Acceleration due to gravity is given by $\mathrm{g}=\left(\mathrm{GM} / \mathrm{R}^{2}\right)\( what is the equation of the fractional error \)\Delta \mathrm{g} / \mathrm{g}\( in measurement of gravity \)\mathrm{g}$ ? [G \& M constant] (a) \(-(\Delta \mathrm{R} / \mathrm{R})\) (b) \(2(\Delta \mathrm{R} / \mathrm{R})\) (c) \(-2(\Delta \mathrm{R} / \mathrm{R})\) (d) \((1 / 2)(\Delta \mathrm{R} / \mathrm{R})\)

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free