Chapter 1: Problem 157
A cube has numerically equal volume and surface area calculate the volume of such a cube. (a) 2000 Unit (b) 216 Unit (c) 2160 Unit (d) 1000 Unit
Chapter 1: Problem 157
A cube has numerically equal volume and surface area calculate the volume of such a cube. (a) 2000 Unit (b) 216 Unit (c) 2160 Unit (d) 1000 Unit
All the tools & learning materials you need for study success - in one app.
Get started for freeEquation of physical quantity \(\mathrm{v}=\mathrm{at}+\mathrm{bt}^{2}\) where \(\mathrm{v}=\) velocity \(\mathrm{t}=\) time so write the dimensional formula of a in this equation (a) \(\mathrm{M}^{0} \mathrm{~L}^{1} \mathrm{~T}^{-1}\) (b) \(\mathrm{M}^{1} \mathrm{~L}^{1} \mathrm{~T}^{-1}\) (c) \(\mathrm{M}^{0} \mathrm{~L}^{1} \mathrm{~T}^{-2}\) (d) \(\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{0}\)
The radius of circle is \(1.26 \mathrm{~cm}\). According to the concept of significant figures area of it can be represented as - (a) \(4.9850 \mathrm{~cm}^{2}\) (b) \(4.985 \mathrm{~cm}^{2}\) (c) \(4.98 \mathrm{~cm}^{2}\) (d) \(9.98 \mathrm{~cm}^{2}\)
If \(L\) and \(R\) are represented as the inductance and resistance respectively then the dimensional formula of \(R /\) will be \(\ldots \ldots\) (a) \(\mathrm{M}^{-2} \mathrm{~L}^{1} \mathrm{~T}^{-2} \mathrm{~A}^{1}\) (b) \(\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{-1} \mathrm{~A}^{0}\) (c) \(\mathrm{M}^{1} \mathrm{~L}^{-1} \mathrm{~T}^{0} \mathrm{~A}^{1}\) (d) \(\mathrm{M}^{1} \mathrm{~L}^{3} \mathrm{~T}^{1} \mathrm{~A}^{0}\)
Which of the following unit does not represent the unit of power? (a) ampere/volt (b) (ampere) \(^{2} \times \mathrm{ohm}\) (c) joule/second (d) ampere \(\times\) volt
If value of gravitational constant in MKS is $6.67 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}\( then value of \)\mathrm{G}$ in \(\mathrm{CGS}=\ldots \ldots \ldots \ldots . .\left[\left(\right.\right.\) dyne \(\left.\left.-\mathrm{cm}^{2}\right) /\left(\mathrm{gm}^{2}\right)\right]\) (a) \(6.67 \times 10^{-9}\) (b) \(6.67 \times 10^{-7}\) (c) \(6.67 \times 10^{-8}\) (d) \(6.67 \times 10^{-5}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.