Chapter 1: Problem 157
A cube has numerically equal volume and surface area calculate the volume of such a cube. (a) 2000 Unit (b) 216 Unit (c) 2160 Unit (d) 1000 Unit
Chapter 1: Problem 157
A cube has numerically equal volume and surface area calculate the volume of such a cube. (a) 2000 Unit (b) 216 Unit (c) 2160 Unit (d) 1000 Unit
All the tools & learning materials you need for study success - in one app.
Get started for freeKinetic energy \(\mathrm{K}\) and linear momentum \(\mathrm{P}\) are related as \(\mathrm{K}=\left(\mathrm{P}^{2} / 2 \mathrm{~m}\right) .\) What is the equation of the relative error \(\Delta \mathrm{k} / \mathrm{k}\) in measurement of the \(\mathrm{K} ?\) (mass in constant) (a) \((\mathrm{P} / \Delta \mathrm{P})\) (b) \(2(\Delta \mathrm{P} / \mathrm{P})\) (c) \((\mathrm{P} / 2 \Delta \mathrm{P})\) (d) \(4(\Delta \mathrm{P} / \mathrm{P})\)
The significant figures in \(500.5000\) are \(\ldots \ldots \ldots \ldots \ldots\) (a) 5 (b) 3 (c) 7 (d) 6
Equation of physical quantity \(\mathrm{v}=\mathrm{at}+\mathrm{bt}^{2}\) where \(\mathrm{v}=\) velocity \(\mathrm{t}=\) time so write the dimensional formula of a in this equation (a) \(\mathrm{M}^{0} \mathrm{~L}^{1} \mathrm{~T}^{-1}\) (b) \(\mathrm{M}^{1} \mathrm{~L}^{1} \mathrm{~T}^{-1}\) (c) \(\mathrm{M}^{0} \mathrm{~L}^{1} \mathrm{~T}^{-2}\) (d) \(\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{0}\)
Which physical quantity has unit of pascal - second? (a) Velocity (b) viscosity (c) energy (d) coefficient of viscosity
\( 1 \mathrm{Mev}=\ldots \ldots \ldots \ldots \ldots\) (a) \(10^{7}\) (b) \(10^{4}\) (c) \(10^{5}\) (d) \(10^{6}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.