Match column - I with column - II $$ \begin{array}{|l|l|} \hline \multicolumn{1}{|c|} {\text { Column - I }} & \multicolumn{1}{|c|} {\text { Column - II }} \\ \hline \text { (1) capacitance } & \text { (a) } \mathrm{M}^{1} \mathrm{~L}^{1} \mathrm{~T}^{-3} \mathrm{~A}^{-1} \\ \hline \text { (2) Electricfield } & \text { (b) } \mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-1} \\ \hline \text { (3) planck's constant } & \text { (c) } \mathrm{M}^{-1} \mathrm{~L}^{-2} \mathrm{~T}^{4} \mathrm{~A}^{2} \\ \hline \text { (4) Angular momentum } & \text { (d) } \mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-1} \\ \hline \end{array} $$ (a) \(a, c, b, d\) (b) \(c, a, d, b\) (c) \(c, a, b, d\) (d) \(a, b, d, c\)

Short Answer

Expert verified
The short answer is: (b) \(c, a, d, b\)

Step by step solution

01

Recall dimensional formulas for given quantities

We need to recall the dimensional formulas for each quantity: (1) Capacitance (C): \(\mathrm{[C] = \displaystyle\frac{Q}{V}}\) (2) Electric field (E): \(\mathrm{[E] = \displaystyle\frac{F}{q}}\) (3) Planck's constant (h): \(\mathrm{[h] = E \cdot T}\) (4) Angular momentum (L): \(\mathrm{[L] = I \cdot \omega}\)
02

Calculate dimensional formula for each quantity

First, we need to find the dimension of each quantity in terms of mass (M), length (L), time (T), and current (A) using the above formulas. (1) Capacitance (C): Using the formula, \(\displaystyle\frac{Q}{V} \rightarrow \frac{\mathrm{[ML^2T^{-3}A^{-1}]}{\mathrm{[LT^{-1}A^{-1}]}}\), we get \(\mathrm{[C] = M^{-1}L^{-2}T^{4}A^{2}}\) (2) Electric field (E): Using the formula, \(\displaystyle\frac{F}{q} \rightarrow \frac{\mathrm{[MLT^{-2}]}{\mathrm{[IT]}}\), we get \(\mathrm{[E] = M^{1}L^{1}T^{-3}A^{-1}}\) (3) Planck's constant (h): Using the formula, \(ET \rightarrow \mathrm{[ML^2T^{-2}]}\cdot\mathrm{[T]}\), we get \(\mathrm{[h] = M^{1}L^{2}T^{-1}}\) (4) Angular momentum (L): Using the formula, \(I\omega \rightarrow \mathrm{[ML^2]}\cdot\mathrm{[T^{-1}]}\), we get \(\mathrm{[L] = M^{1}L^{2}T^{-1}}\)
03

Match dimensional formulas with column II

Now, we need to match the dimension of each quantity `(1, 2, 3, 4)` with its respective dimensional formula `(a, b, c, d)` as follows: (1) Capacitance (C): \(\mathrm{[C] = M^{-1}L^{-2}T^{4}A^{2}}\) (c) (2) Electric field (E): \(\mathrm{[E] = M^{1}L^{1}T^{-3}A^{-1}}\) (a) (3) Planck's constant (h): \(\mathrm{[h] = M^{1}L^{2}T^{-1}}\) (d) (4) Angular momentum (L): \(\mathrm{[L] = M^{1}L^{2}T^{-1}}\) (b) So the correct matching is: (1) Capacitance → (c), (2) Electric field → (a), (3) Planck's constant → (d), and (4) Angular momentum → (b). Therefore, the correct answer is the option (b) \(c, a, d, b\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free