Chapter 1: Problem 22
When charges are at rest the force is given by $\ldots \ldots \ldots \ldots \ldots$ law. (a) coulomb's (b) Newton's (c) Ampere's (d) Faraday's
Chapter 1: Problem 22
When charges are at rest the force is given by $\ldots \ldots \ldots \ldots \ldots$ law. (a) coulomb's (b) Newton's (c) Ampere's (d) Faraday's
All the tools & learning materials you need for study success - in one app.
Get started for freePressure \(P=A \cos B x+c \sin D t\) where \(x\) in meter and \(t\) in time then find dimensional formula of \(\mathrm{D} / \mathrm{B}\) (a) \(\mathrm{M}^{1} \mathrm{~L}^{1} \mathrm{~T}^{-1}\) (b) \(\mathrm{M}^{0} \mathrm{~L}^{1} \mathrm{~T}^{-1}\) (c) \(\mathrm{M}^{1} \mathrm{~L}^{1} \mathrm{~T}^{0}\) (d) \(\mathrm{M}^{-1} \mathrm{~L}^{0} \mathrm{~T}^{1}\)
If \(\mathrm{A}=\mathrm{b}^{4}\) the fractional error in \(\mathrm{A}\) is $\ldots \ldots \ldots \ldots$ (a) \(\left[(\Delta \mathrm{b})^{4} /(\mathrm{b})\right]\) (b) \([\Delta \mathrm{b} / \mathrm{b}]\) (c) \(4[(\Delta \mathrm{b}) /(\mathrm{b})]\) (d) \((\Delta \mathrm{b})^{4}\)
Write the dimensional formula of the ratio of linear momentum to angular momentum. (a) \(\mathrm{M}^{0} \mathrm{~L}^{-1} \mathrm{~T}^{0}\) (b) \(\mathrm{M}^{1} \mathrm{~L}^{1} \mathrm{~T}^{0}\) (c) \(\mathrm{M}^{0} \mathrm{~L}^{1} \mathrm{~T}^{0}\) (d) \(\mathrm{M}^{0} \mathrm{~L}^{1} \mathrm{~T}^{1}\)
Unit of momentum physical quantity? (a) newton - second (b) newton/second (c) Joule (d) Joule/second
Dimensional formula for thermal conductivity (k) is.. (a) \(\mathrm{M}^{2} \mathrm{~L}^{1} \mathrm{~T}^{-2} \mathrm{~K}^{-1}\) (b) \(\mathrm{M}^{1} \mathrm{~L}^{1} \mathrm{~T}^{-2} \mathrm{~K}^{1}\) (c) \(\mathrm{M}^{1} \mathrm{~L}^{0} \mathrm{~T}^{-3} \mathrm{~K}^{-1}\) (d) \(\mathrm{M}^{1} \mathrm{~L}^{1} \mathrm{~T}^{-3} \mathrm{~K}^{-1}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.