Chapter 1: Problem 30
\(\ldots \ldots \ldots \ldots \ldots\) and \(\ldots \ldots \ldots \ldots .\) law's are called inverse square law (a) Gravitation and weak (b) Gravitation and coulomb's (c) Coulomb's and strong (d) Electromagnetic and coulomb's
Chapter 1: Problem 30
\(\ldots \ldots \ldots \ldots \ldots\) and \(\ldots \ldots \ldots \ldots .\) law's are called inverse square law (a) Gravitation and weak (b) Gravitation and coulomb's (c) Coulomb's and strong (d) Electromagnetic and coulomb's
All the tools & learning materials you need for study success - in one app.
Get started for freeDimensional formula for Boltzmann's constant is $\ldots \ldots \ldots \ldots \ldots$ (a) \(\mathrm{M}^{1} \mathrm{~L}^{1} \mathrm{~T}^{-2} \mathrm{~K}^{-1}\) (b) \(\mathrm{M}^{2} \mathrm{~L}^{1} \mathrm{~T}^{-2} \mathrm{~K}^{-1}\) (c) \(\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-2} \mathrm{~K}^{-1}\) (d) \(\mathrm{M}^{2} \mathrm{~L}^{2} \mathrm{~T}^{1} \mathrm{~K}^{-2}\)
100 watt hour \(=\ldots \ldots \ldots \ldots \ldots\) joule. (a) \(3.6 \times 10^{5} \mathrm{~J}\) (b) \(3.6 \times 10^{6} \mathrm{~J}\) (c) \(36 \times 10^{5} \mathrm{~J}\) (d) \(36 \times 10^{6} \mathrm{~J}\)
Match column - I with column - II $$ \begin{array}{|l|l|} \hline \multicolumn{1}{|c|} {\text { Column - I }} & \multicolumn{1}{|c|} {\text { Column - II }} \\ \hline \text { (1) capacitance } & \text { (a) } \mathrm{M}^{1} \mathrm{~L}^{1} \mathrm{~T}^{-3} \mathrm{~A}^{-1} \\ \hline \text { (2) Electricfield } & \text { (b) } \mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-1} \\ \hline \text { (3) planck's constant } & \text { (c) } \mathrm{M}^{-1} \mathrm{~L}^{-2} \mathrm{~T}^{4} \mathrm{~A}^{2} \\ \hline \text { (4) Angular momentum } & \text { (d) } \mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-1} \\ \hline \end{array} $$ (a) \(a, c, b, d\) (b) \(c, a, d, b\) (c) \(c, a, b, d\) (d) \(a, b, d, c\)
Acceleration due to gravity is given by $\mathrm{g}=\left(\mathrm{GM} / \mathrm{R}^{2}\right)\( what is the equation of the fractional error \)\Delta \mathrm{g} / \mathrm{g}\( in measurement of gravity \)\mathrm{g}$ ? [G \& M constant] (a) \(-(\Delta \mathrm{R} / \mathrm{R})\) (b) \(2(\Delta \mathrm{R} / \mathrm{R})\) (c) \(-2(\Delta \mathrm{R} / \mathrm{R})\) (d) \((1 / 2)(\Delta \mathrm{R} / \mathrm{R})\)
Pressure \(P=A \cos B x+c \sin D t\) where \(x\) in meter and \(t\) in time then find dimensional formula of \(\mathrm{D} / \mathrm{B}\) (a) \(\mathrm{M}^{1} \mathrm{~L}^{1} \mathrm{~T}^{-1}\) (b) \(\mathrm{M}^{0} \mathrm{~L}^{1} \mathrm{~T}^{-1}\) (c) \(\mathrm{M}^{1} \mathrm{~L}^{1} \mathrm{~T}^{0}\) (d) \(\mathrm{M}^{-1} \mathrm{~L}^{0} \mathrm{~T}^{1}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.