Chapter 1: Problem 30
\(\ldots \ldots \ldots \ldots \ldots\) and \(\ldots \ldots \ldots \ldots .\) law's are called inverse square law (a) Gravitation and weak (b) Gravitation and coulomb's (c) Coulomb's and strong (d) Electromagnetic and coulomb's
Chapter 1: Problem 30
\(\ldots \ldots \ldots \ldots \ldots\) and \(\ldots \ldots \ldots \ldots .\) law's are called inverse square law (a) Gravitation and weak (b) Gravitation and coulomb's (c) Coulomb's and strong (d) Electromagnetic and coulomb's
All the tools & learning materials you need for study success - in one app.
Get started for freeThe resistance of two resistance wires are \(R_{1}=(100 \pm 5) \Omega\) and \(\mathrm{R}_{2}=(200 \pm 7) \Omega\) are connected in series. find the maximum absolute error in the equivalent resistance of the combination. (a) \(35 \Omega\) (b) \(12 \Omega\) (c) \(4 \Omega\) (d) \(9 \Omega\)
Match column - I with column - II $$ \begin{array}{|l|l|} \hline \multicolumn{1}{|c|} {\text { Column - I }} & \multicolumn{1}{|c|} {\text { Column - II }} \\ \hline \text { (1) capacitance } & \text { (a) } \mathrm{M}^{1} \mathrm{~L}^{1} \mathrm{~T}^{-3} \mathrm{~A}^{-1} \\ \hline \text { (2) Electricfield } & \text { (b) } \mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-1} \\ \hline \text { (3) planck's constant } & \text { (c) } \mathrm{M}^{-1} \mathrm{~L}^{-2} \mathrm{~T}^{4} \mathrm{~A}^{2} \\ \hline \text { (4) Angular momentum } & \text { (d) } \mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-1} \\ \hline \end{array} $$ (a) \(a, c, b, d\) (b) \(c, a, d, b\) (c) \(c, a, b, d\) (d) \(a, b, d, c\)
\(1 \mathrm{~g}=\ldots \ldots \ldots \ldots \ldots\) amu (a) \(6.02 \times 10^{23}\) (b) \(6.02 \times 10^{-23}\) (c) \(1.66 \times 10^{-27}\) (d) \(1.66 \times 10^{27}\)
Dimensional formula of \(\mathrm{CV}\) ? where C - capacitance and \(\mathrm{V}\) - potential difference (a) \(\mathrm{M}^{1} \mathrm{~L}^{-2} \mathrm{~T}^{4} \mathrm{~A}^{2}\) (b) \(\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-3} \mathrm{~A}^{1}\) (c) \(\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{1} \mathrm{~A}^{-1}\) (d) \(\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{1} \mathrm{~A}^{1}\)
The dimensional formula of plank's constant is ........... (a) \(\mathrm{M}^{3} \mathrm{~L}^{2} \mathrm{~T}^{-1}\) (b) \(\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-1}\) (c) \(\mathrm{M}^{2} \mathrm{~L}^{1} \mathrm{~T}^{-1}\) (d) \(\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-3}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.