Chapter 1: Problem 36
Who has unified electromagnetism and optics? (a) Newton (b) Maxwell (c) Coulomb (d) Faraday
Chapter 1: Problem 36
Who has unified electromagnetism and optics? (a) Newton (b) Maxwell (c) Coulomb (d) Faraday
All the tools & learning materials you need for study success - in one app.
Get started for freeFor measurement of astronomical distance ............. is used. (a) vernier callipers (b) spherometer (c) screw gauge (d) indirect method
Pressure \(P=\left(a t^{2} / b x\right)\) where \(x=\) distance, \(t=\) time find the dimensional formula for \(\mathrm{a} / \mathrm{b}\) (a) \(\mathrm{M}^{1} \mathrm{~L}^{0} \mathrm{~T}^{-4}\) (b) \(\mathrm{M}^{1} \mathrm{~L}^{1} \mathrm{~T}^{-1}\) (c) \(\mathrm{M}^{1} \mathrm{~L}^{0} \mathrm{~T}^{-2}\) (d) \(\mathrm{M}^{+1} \mathrm{~L}^{0} \mathrm{~T}^{-2}\)
Find the dimensional formula for energy per unit surface area per unit time (a) \(\mathrm{M}^{1} \mathrm{~L}^{0} \mathrm{~T}^{-2}\) (b) \(\mathrm{M}^{0} \mathrm{~L}^{1} \mathrm{~T}^{-1}\) (c) \(\mathrm{M}^{1} \mathrm{~L}^{0} \mathrm{~T}^{-3}\) (d) \(\mathrm{M}^{1} \mathrm{~L}^{-1} \mathrm{~T}^{1}\)
\( 1\) parsec \(=\ldots \ldots \ldots \ldots \ldots\) (a) \(10^{-15} \mathrm{~m}\) (b) \(1.496 \times 10^{11} \mathrm{~m}\) (c) \(1.496 \times 10^{15} \mathrm{~m}\) (d) \(3.08 \times 10^{16} \mathrm{~m}\)
Match list - I with list - II $$ \begin{array}{|l|l|} \hline \multicolumn{1}{|c|} {\text { List - I }} & \multicolumn{1}{|c|} {\text { List - II }} \\ \hline \text { (1) Joule } & \text { (a) henry } \times \text { ampere/sec } \\\ \hline \text { (2) Watt } & \text { (b) coulomb } \times \text { volt } \\ \hline \text { (3) volt } & \text { (c) meter } \times \text { ohm } \\ \hline \text { (4) Resistivity } & \text { (d) (ampere) }^{2} \times \text { ohm } \\ \hline \end{array} $$ (a) \(b, d, c, a\) (b) \(c, a, b, d\) (c) \(b, d, a, c\) (d) \(b, c, a, d\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.