Chapter 1: Problem 44
Time is homogeneous so .............. law of conservation is the result of this (a) angular momentum (b) linear momentum (c) energy (d) charge
Chapter 1: Problem 44
Time is homogeneous so .............. law of conservation is the result of this (a) angular momentum (b) linear momentum (c) energy (d) charge
All the tools & learning materials you need for study success - in one app.
Get started for freePressure \(P=A \cos B x+c \sin D t\) where \(x\) in meter and \(t\) in time then find dimensional formula of \(\mathrm{D} / \mathrm{B}\) (a) \(\mathrm{M}^{1} \mathrm{~L}^{1} \mathrm{~T}^{-1}\) (b) \(\mathrm{M}^{0} \mathrm{~L}^{1} \mathrm{~T}^{-1}\) (c) \(\mathrm{M}^{1} \mathrm{~L}^{1} \mathrm{~T}^{0}\) (d) \(\mathrm{M}^{-1} \mathrm{~L}^{0} \mathrm{~T}^{1}\)
If \(\mathrm{A}=3.331 \mathrm{~cm} \mathrm{~B}=3.3 \mathrm{~cm}\) then with regard to significant figure \(\mathrm{A}+\mathrm{B}=\ldots \ldots\) (a) \(6.6 \mathrm{~cm}\) (b) \(6.31 \mathrm{~cm}\) (c) \(6.631 \mathrm{~cm}\) (d) \(6 \mathrm{~cm}\)
The force \(F\) is represented by equation \(F=P \ell+Q \ell^{-1}\), where \(\ell\) is the length. The unit of \(P\) is same as that of $\ldots \ldots \ldots \ldots \ldots$ (a) Surface tension (b) velocity (c) force (d) momentum
Match list - I with list - II $$ \begin{array}{|l|l|} \hline \multicolumn{1}{|c|} {\text { List - I }} & \multicolumn{1}{|c|} {\text { List - II }} \\ \hline \text { (1) Joule } & \text { (a) henry } \times \text { ampere/sec } \\\ \hline \text { (2) Watt } & \text { (b) coulomb } \times \text { volt } \\ \hline \text { (3) volt } & \text { (c) meter } \times \text { ohm } \\ \hline \text { (4) Resistivity } & \text { (d) (ampere) }^{2} \times \text { ohm } \\ \hline \end{array} $$ (a) \(b, d, c, a\) (b) \(c, a, b, d\) (c) \(b, d, a, c\) (d) \(b, c, a, d\)
Dimensional formula for calories is .............. (a) \(\mathrm{M}^{1} \mathrm{~L}^{1} \mathrm{~T}^{-2}\) (b) \(\mathrm{M}^{2} \mathrm{~L}^{1} \mathrm{~T}^{-2}\) (c) \(\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-2}\) (d) \(\mathrm{M}^{2} \mathrm{~L}^{2} \mathrm{~T}^{-2}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.